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Abstract

A point set in a metric space is said to have property Φ(4, 5) if every 4 elements determine
at least 5 distinct distances. According to an old conjecture of Erdős (1986 or earlier), a set of
n points in the Euclidean plane satisfying this restriction determines Ω(n2) distinct distances.
This property (restriction) is shown to be equivalent to forbidding eight 4-element patterns, πi,
i = 1, . . . , 8 (described in Section 2, Lemma 1). The existence of n-element point sets without
the three patterns π1, π2, π3, that determine only o(n2) distinct distances was previously known.
Here we exhibit n-element point sets without the seven patterns π1, π3, π4, π5, π6, π7, π8, that
determine only o(n2) distinct distances. The existence of point sets missing all eight forbidden
patterns and determining only o(n2) distinct distances remains open.

Keywords: distinct distances, distinct vectors, general position, probabilistic construction.

1 Introduction

In 1946, in his classical paper [4] published in the American Mathematical Monthly, Erdős raised
the following inspiring question: What is the minimum number of distinct distances determined by
n points in the plane? Denoting this number by g(n), he proved that g(n) = Ω(

√
n), and pointed

out that the upper bound g(n) = O(n/
√

log n) follows from estimating the number of distinct
distances in a

√
n ×
√
n section of the integer grid. He also went further to conjecture that the

upper bound is the best possible, i.e., g(n) = Ω(n/
√

log n). After many successive improvements,
in a breakthrough development, Guth and Katz [13] managed to bring the lower bound very close
to the conjectured upper bound: specifically, they proved that g(n) = Ω(n/ log n). See also the
many different surveys and articles dedicated to this research area, e.g., [19, 20] for some recent
accounts. The problem of distinct distances posed in 1946 lead to many interesting variants, one
of which is discussed here. Specifically, given a pair k, l of positive integers, with l ≤

(
k
2

)
, what is

the minimum number of distinct distances determined by a set of n points in the plane, in which
every k-element subset determines at least l distinct distances?

A set of points in the plane is said to be in general position if no three of them are collinear
and no four of them are cocircular. If a point set determines only distinct vectors, it is called
parallelogram free. A kite is a (convex or concave) quadrilateral, whose four sides can be grouped
into two pairs of equal-length sides that are adjacent to each other; see Fig. 1 (right). In contrast,
a parallelogram also has two pairs of equal-length sides, but they are opposite to each other rather
than adjacent. (A rhombus is both a parallelogram and a kite.)
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It is known [3] that there exist n-element point sets in the plane in general position, and
parallelogram free, that determine only O(n2/

√
log n) distinct distances. A point set is said to

have property Φ(k, l) if every k-element subset determines at least l distinct distances.
Erdős [8, p. 34] conjectured that every set of n points in the plane satisfying property Φ(4, 5)

determines Ω(n2) distinct distances; see also [2, Conjecture 6, p. 204]; while he repeatedly asked
the question over the years, see [5, p. 101], [6, p. 61], [7, p. 149], [9, p. 347]. A classification (in the
forthcoming Lemma 1 in Section 2) shows that a planar point set has property Φ(4, 5) if and only
if it does not contain any of eight forbidden 4-element patterns, πi, i = 1, . . . , 8: (i) an equilateral
triangle and an arbitrary 4th point, (ii) a parallelogram, (iii) an isosceles trapezoid, (iv) a star with
3 edges of the same length, (v) the vertex set of a path with 3 edges of the same length, (vi) a
kite, (vii) an isosceles triangle plus an edge incident to a base endpoint and whose length equals
the length of the base, and (viii) an isosceles triangle plus an edge incident to the apex and whose
length equals the length of the base.

The earlier construction described in [3] is a subset of size Θ(n) of the n × n section of Z2

that determines O(n2/
√

log n) distinct distances. Since Z2 does not determine any equilateral
triangles, the constructed point set avoids pattern π1; further, as shown in [3], it also avoids
pattern π2. Finally, since the construction in [3] has no four points on a circle, it avoids pattern
π3 as well; indeed, recall that every isosceles trapezoid can be inscribed in a circle. To summarize,
the constructed point set avoids the three patterns π1, π2, π3. Our main result in this paper is the
following.

Theorem 1. There exist n-element point sets in the plane without the seven patterns π1, π3, π4, π5,
π6, π7, π8, that determine only O(n2/

√
log n) distinct distances.

Notation. For two points a, b ∈ R2, let `(a, b) denote the line incident to a and b. Let Gn =
{0, 1, . . . , n− 1}×{0, 1, . . . , n− 1} be the (standard) n×n section of the integer lattice Z2; and let
G√n denote a m ×m section of Z2, where m = b

√
nc. For a point-set S, its distance graph is the

complete graph on vertex set S, where edges are colored so that two edges receive the same color
if and only if they have the same Euclidean length.

2 Preliminaries

We will apply a classic result of Szemerédi and Trotter [23] on the number of point-lines incidences
in the plane (the result holds in arbitrary dimensions); see also [17] for several applications of
incidence bounds. The Szemerédi-Trotter bound comes in two equivalent formulations. Given a
point set S in R2, for any integer k ≥ 2, a line is called k-rich if it is incident to at least k points
of S. We denote by L≥k the set of k-rich lines.

Theorem 2. (Szemerédi-Trotter [23]). Given n points in R2, the number of k-rich lines, k ≥ 2, is

|L≥k| = O
(
n2/k3 + n/k

)
.

Theorem 3. (Szemerédi-Trotter [23]). The number of point-line incidences among n points and `
lines in R2 is

I(n, `) = O(n2/3`2/3 + n+ `).

Previous related work. It is known there exist suitable subsets of size Θ(n) of Gn that have
no 3 collinear points, no 4 cocircular points, and no 4 points that make a parallelogram [3].
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For a prime p, and x ∈ Z, let x̂ := x mod p (we view x̂ as an element of Zp = {0, 1, . . . , p−1}).
Let n be a prime and consider the n-element point set En ⊂ Gn:

En = {(i, î2) | i = 0, 1, . . . , n− 1}.

Erdős showed that En has no three collinear points. Let

Sn = {(i, î2) | i = 0, 1, . . . , (n− 1)/4}.

Recall that a
√
n×
√
n section of the integer lattice determines O(n/

√
log n) distances and this

leads to the upper bound g(n) = O(n/
√

log n) [4]. As such, Gn determines O(n2/
√

log n) distinct
distances; obviously, this upper bound also holds for any subset of Gn, En or Sn in particular.
Clearly Sn has no three collinear points (as a subset of En).

Thiele [24] showed that Sn has no four cocircular points. This was in the context of finding
large subsets of the n × n grid without four cocircular points in response to a problem raised by
Erdős and Purdy; see [2, pp. 418]. Thiele’s result was rediscovered in [3] (with a different proof),
where it was also shown that Sn determines no parallelogram. Consequently, there exist n-element
point sets in the plane with no 3 collinear points, no 4 cocircular points, and no 4 points that make
a parallelogram, that determine only O(n2/

√
log n) distinct distances.

Distinct distances and the property Φ(k, l). Let S be a set of points in the plane. For
integers k, l ≥ 2 with l ≤

(
k
2

)
, let Φ(k, l) be the property that any k points from S determine

at least l distinct distances; and let φ(n, k, l) denote the minimum number of distinct distances
determined by a planar n-element point set S with the property Φ(k, l). Trivially, φ(n, k,

(
k
2

)
) =

(
n
2

)
for every k ≥ 4, since no two distances are the same. Most questions about estimating φ(n, k, l) are
notoriously hard and essentially unsolved; for instance, determining whether φ(n, 3, 3) = O(n) is
currently an outstanding open problem; see also the survey [20] for a listing of current bounds. On
the other hand, the famous Guth-Katz result [13] immediately implies that φ(n, k, l) = Ω(n/ log n)
for every k and l.

The current best bounds for a few relevant combinations (k, l), with k ≥ 4, as implied by
results of Erdős and Gyárfás [10], Fox, Pach, and Suk [12], and Pohoata and Sheffer [18], are listed
in Table 1.

Variant Lower bound Upper bound

φ(n, 4, 5) Ω(n) O(n2)

φ(n, 5, 9) Ω(n) O(n2)

φ(n, 9, 33) [12] Ω(n8/7−ε) O(n2)

φ(n, 7, 19) [10] Ω(n4/3) O(n2)

φ(n, 6, 14) [18] Ω(n3/2) O(n2)

φ(n, 7, 20) [12] Ω(n2) O(n2)

φ(n, 8, 26) [12] Ω(n2) O(n2)

Table 1: The entries are listed in lower bound order, from linear to quadratic.

Forbidden 4-point patterns and the property Φ(4, 5). Consider the property Φ(4, 5); we
first show that the following makes a complete list of forbidden patterns in G√n; if none of these
patterns is present, the point set has the property Φ(4, 5).
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Lemma 1. Assume that Q = {a, b, c, d} determines at most 4 distinct distances. Then Q deter-
mines one of the following 8 patterns:

π1: an equilateral triangle plus an arbitrary vertex.

π2: a parallelogram.

π3: an isosceles trapezoid (four points on a line, a, b, c, d, where ab = cd, form a degenerate
isosceles trapezoid).

π4: a star with 3 edges of the same length.

π5: a path with 3 edges of the same length.

π6: a kite.

π7: an isosceles triangle plus an edge incident to a base endpoint, and whose length equals the
length of the base.

π8: an isosceles triangle plus an edge incident to the apex, and whose length equals the length of
the base.

Proof. Assume that Q = {a, b, c, d} determines at most 4 distinct distances; see Fig. 1 for an
illustration. Then either some distance occurs (at least) 3 times, or there are two distinct distances
x, y each occurring exactly 2 times. We distinguish two cases (occasionally we refer to the distance
graph and its coloring in the analysis):

c

da

b

c
b

c
b

d

a

a

d

ℓ

Figure 1: Left: seven forbidden patterns in G√
n. Right: a kite with axis `(cd).

Case 1: x occurs (at least) 3 times. Then the edges of length x form either a monochromatic
triangle, or a monochromatic star with 3 edges, or a monochromatic path with 3 edges; i.e., one of
the patterns π1, π4, π5 occurs.

Case 2: x and y occur exactly 2 times each.

Case 2.1: Neither the two edges of length x nor the two edges of length y share a common
endpoint. Then the edges of length x and y form either a parallelogram or an isosceles trapezoid;
note that in the latter case, the two non-parallel edges of the trapezoid have length x and the two
diagonals of the trapezoid have length y. That is, one of the patterns π2, π3 occurs.

Case 2.2: Both the two edges of length x and the two edges of length y share common endpoints.
Assume that ∆cab is an isosceles triangle, with |ca| = |cb| = x. There are two possibilities: (i) the
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two edges of length y are adjacent at d, i.e., |da| = |db| = y, or (ii) they are adjacent at a (or b, this
case is symmetric), i.e., |ab| = |ad| = y. In the former case (|ca| = |cb| = x and |da| = |db| = y), we
have a kite (pattern π6); in the latter case we have an isosceles triangle plus an edge incident to a
base endpoint, and whose length equals the length of the base (pattern π7).

Case 2.3: The two edges of length x share a common endpoint while the two edges of length y
do not share a common endpoint, i.e., |ca| = |cb| = x and |ab| = |cd| = y; and we have an isosceles
triangle plus an edge incident to the apex c, and whose length equals the length of the base (pattern
π8).

3 Forbidden patterns in the
√
n×
√
n grid section

Our proof of Theorem 1 is based on a probabilistic construction of a subset of a square section of
the integer lattice. To analyze this construction we estimate the frequency of each of the forbidden
patterns in such a section.

We begin with a simple lemma on the geometry of orthogonal line intersections inside a square.

Lemma 2. Let U be a square and ` and h be two orthogonal lines that intersect inside U ; refer
to Fig. 2. Consider an arbitrary orientation of ` and let `− and `+ be the two closed halfplanes
determined by `, respectively. Then

min
(
|h ∩ `− ∩ U |, |h ∩ `+ ∩ U |

)
≤ |` ∩ U |.

ℓ

h

Figure 2: A square and two orthogonal lines.

Proof. We may assume that U is a unit square. We distinguish two cases.

Case 1. ` intersects two adjacent sides of U , say, `− ∩ U is a right triangle ∆ with orthogonal
sides of lengths x and y, respectively. Then min (|h ∩ `− ∩ U |, |h ∩ `+ ∩ U |) is at most the length
of the height of ∆, i.e.,

min
(
|h ∩ `− ∩ U |, |h ∩ `+ ∩ U |

)
≤ |xy|
|` ∩ U |

≤ |x| ≤ |` ∩ U |.

Case 2. ` intersects two opposite sides of U ; as such, |` ∩ U | ≥ 1. On the other hand, since
|h ∩ U | ≤ diam(U) =

√
2, we have

min
(
|h ∩ `− ∩ U |, |h ∩ `+ ∩ U |

)
≤ |h ∩ U |/2 ≤

√
2/2 ≤ 1 ≤ |` ∩ U |.

It is easy to see that apart from a small constant factor, the inequality in the lemma cannot be
improved.
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We continue with a sequence of lemmas concerning the number of forbidden patterns of each
type that are present in the

√
n ×
√
n section G√n; specifically, let Fi(n) denote the number of

(forbidden) patterns πi present in G√n, for i = 1, . . . , 8.

Lemma 3. Let P denote the number of parallelograms in G√n; i.e., P = F2(n). Then P = Θ(n3).

Proof. Given any three elements of a, b, c ∈ G√n, they can be completed to a parallelogram in at

most 3 ways; thus P = O(n3). It is easy to see that this bound is also attainable.

For an isosceles triangle ∆cab, where |ca| = |cb|, c is incident to the perpendicular bisector, say,
`, of segment ab; we say that ∆cab is an isosceles triangle with axis `.

Lemma 4. Let ` be a line determined by G√n, that is incident to j points of G√n. Then the

number of isosceles triangles with axis ` is O(j3).

Proof. Let ∆cab be an isosceles triangle with axis `. The points in G√n that are incident to ` are
evenly spaced, say at distance δ. Since `(a, b) is orthogonal to `, the points in G√n that are incident
to `(a, b) are also evenly spaced with the same distance δ. Let mL and mR be the numbers of points
of G√n∩`(a, b) that are left and right of `, respectively. By Lemma 2 we have min(mL,mR) = O(j).
It follows that the number of isosceles triangles ∆cab, where `(a, b) is a fixed line, and c ∈ ` is a fixed
point, is O(j). Moreover, the lines `(a, b) are also evenly spaced with the same distance δ, thus the
total number of lines `(a, b) where ∆cab is an isosceles triangle with axis ` is also O(j). Altogether
there are O(j2) choices for a, b (fixing one of them determines the other) and O(j) choices for c;
consequently, there are O(j3) isosceles triangles with axis `.

Lemma 5. Let ` be a line determined by G√n, that is incident to j points of G√n. Then the

number of kites with axis ` is O(j4).

Proof. Let {a, b, c, d} be a kite with axis ` = `(c, d), for some c, d ∈ Gn; see Fig. 1 (right). Observe
that ∆cab and ∆dab are both isosceles triangles with a common axis ` and sharing the same pair
of vertices a, b, and so we can apply the arguments in the proof of Lemma 4. We only include a
summary of the findings. The number of kites {a, b, c, d}, where `(a, b) is a fixed line, and c, d ∈ `
are fixed, is O(j). Moreover, the total number of lines `(a, b), where {a, b, c, d} is a kite with axis `
is also O(j). Altogether there are O(j2) choices for a, b and O(j2) choices for c and d; consequently,
there are O(j4) kites with axis `, as required.

Lemma 6. Let K denote the number of kites in G√n; i.e., K = F6(n). Then K = Θ(n5/2).

Proof. Let S = G√n. Observe that every line determined by S is incident to at most
√
n points

of S. Denote by Li the set of lines incident to at least 2i but fewer than 2i+1 points of S, for
i = 1, . . . , log

√
n.

By Theorem 2, we have |Li| = O
(
n2/23i

)
in this range (since the first term dominates the second

term in the upper bound). Summing the number of kites with axis ` over all lines ` determined by
S yields

K =

log
√
n∑

i=1

O

(
n2

23i
· 24i

)
=

log
√
n∑

i=1

O
(
n22i

)
= O(n5/2),

as required.
It is easy to check that this upper bound is asymptotically tight, since there are Ω(n5/2) kites

whose axes are axis-aligned: there are about
√
n choices for `(c, d),

(√
n
2

)
choices for c, d on this

line,
√
n choices for `(a, b), and

√
n choices for the pair a, b on this line.
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For an isosceles trapezoid τ = {a, b, c, d}, where |ad| = |bc|, let ` denote the common perpen-
dicular bisector of ab and cd; we say that τ is an isosceles trapezoid with axis `.

Lemma 7. Let ` be a line determined by G√n, that is incident to j points of G√n. Then the

number of isosceles trapezoids with axis ` is O(j4).

Proof. Let {a, b, c, d} be an isosceles trapezoid with axis `, where `(a, b) ‖ `(c, d); see Fig. 3. The
arguments are similar to those in the proofs of Lemmas 4 and 5. In particular, if the points in
G√n ∩ ` are at distance δ from each other, the points in G√n ∩ `(a, b) are also at distance δ from
each other. Let mL and mR be the numbers of points of G√n ∩ `(a, b) that are left and right of `,
respectively. By Lemma 2 we have min(mL,mR) = O(j). Similarly, if pL and pR are the numbers
of points of G√n ∩ `(c, d) that are left and right of `, respectively, we have min(pL, pR) = O(j).

a

b

c

ℓ

d

Figure 3: An isosceles trapezoid with axis `.

It follows that the number of isosceles trapezoids {a, b, c, d}, where `(a, b) and `(c, d) are fixed
lines is O(j2). There are O(j2) choices for `(a, b) and `(c, d), and thus O(j4) isosceles trapezoids
with axis ` altogether.

Lemma 8. Let T denote the number of isosceles trapezoids in G√n; i.e., T = F3(n). Then

T = Θ(n5/2).

Proof. The upper bound calculation is the same with that in the proof of Lemma 6. Summing the
number of isosceles trapezoids with with axis ` over all lines ` determined by S yields

T =

log
√
n∑

i=1

O

(
n2

23i
· 24i

)
=

log
√
n∑

i=1

O
(
n22i

)
= O(n5/2).

The lower bound argument is also similar to that in the proof of Lemma 6. There are Ω(n5/2)

isosceles trapezoids whose axes are axis-aligned: there are about
(√

n
2

)
choices for `(a, b) and `(c, d),√

n choices for the perpendicular bisector `,
√
n choices for a on `(a, b) left of `, and

√
n choices for

d on `(c, d) left of `.

Let I denote the number of isosceles triangles with vertices in G√n. It is known [11] that

I = Ω(n2 log n); see also [2, p. 276]. From the other direction, we have the following tight upper
bound.

Lemma 9. I = O(n2 log n).
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Proof. Similarly to the proof of Lemma 6, we now have

I =

log
√
n∑

i=1

O

(
n2

23i
· 23i

)
= O

n2 log
√
n∑

i=1

1

 = O
(
n2 log n

)
.

Let f(n) denote the maximum number of occurrences of the same distance, as determined by
pairs of points in G√n. It was pointed out by Erdős [4] that f(n) ≥ n1+c1/ log logn, where c1 > 0 is
a suitable constant—without providing complete proof details; see [15, pp. 52–53], or [16, pp. 143–
144] for such arguments. On the other hand, the current best upper bound stands at O(n4/3) [21],
as established by Spencer et al. [21] in the early 1980s; see also [22] for a short proof of this bound;
or [2, Ch. 5.1] for a general account. The above upper bound1 gives the following.

Lemma 10. Let δ > 0 and v be any lattice point in G√n. Then v is at distance δ from O(n1/3)
points in G√n.

Proof. Assume that v is at distance δ from x points in G√n. Then one could find Ω(n) points in
the (slightly larger) lattice section G2

√
n that are each at distance δ from at least x points; and

thus obtain Ω(xn) repeated distances in this section. By the upper bound previously mentioned,
this number is O((4n)4/3) = O(n4/3), hence x = O(n1/3), as claimed.

Lemma 11. Let Fi(n) denote the number of patterns πi present in G√n, for i = 1, . . . , 8. Then

Fi(n) = o(n5/2) for i = 4, 5, 7, 8.

Proof. Let I denote the number of isosceles triangles with vertices in G√n. By Lemma 9, I =

O(n2 log n). Observe that any 3-star or pattern π8 can be obtained by appending an edge of a
given length to the apex of an isosceles triangle. Similarly, observe that any 3-path or pattern π7
can be obtained by appending an edge of a given length to one of the endpoints of the base of an
isosceles triangle. Lemma 10 yields that

Fi(n) ≤ 2I ·O(n1/3) = O(n7/3 log n) = o(n5/2), for i = 4, 5, 7, 8.

4 Proof of Theorem 1

Construction. A 4-element subset of Gn is called bad if it corresponds to one of the seven
forbidden patterns, πi, i = 1, 3, 4, 5, 6, 7, 8. Since Z2 does not determine any equilateral triangles, Gn
avoids pattern π1. Let B1, . . . , Bk, denote all the bad 4-element subsets in Gn. By Lemmas 6,8,11,
we have k ≤ cn5, for some positive constant c (and for n sufficiently large). We choose a point set
by the following construction.

In the first step, choose a subset R of size λn from among the n2 points in Gn uniformly at
random; here λ < 1 is a suitable positive constant (to be determined). Let p be the probability
that a given 4-element subset Q is present in the random sample of λn points. This probability
equals the ratio between the number of λn-sets containing Q and the total number of λn-sets. In
particular, p is the probability that a given bad 4-element subset appears in the random sample R
of λn points. Let X be the random variable counting the number of bad 4-element subsets in the

1A sharper estimate on the number of repeated distances, O(n1+ε) for any ε > 0, is known for points in G√n;
see [14, Sections 16.9 and 18.1]. On the other hand, a sharper bound is not needed in our derivation.
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random sample. We have

p =

(
n2−4
λn−4

)(
n2

λn

) =
(n2 − 4)!

(λn− 4)!(n2 − λn)!
· (λn)!(n2 − λn)!

(n2)!

=
λn (λn− 1)(λn− 2)(λn− 3)

n2 (n2 − 1)(n2 − 2)(n2 − 3)

≤ λ4

n4
,

for n sufficiently large (indeed, we have λn−i
n2−i ≤

λn
n2 = λ

n , for i ≤ 3 and λn ≥ 4).
Consequently, the expected value of X is

E[X] =

k∑
1=1

Prob(Bi appears in R) ≤ kp ≤ cn5λ
4

n4
= cλ4n ≤ λn

2
,

provided that 2cλ3 ≤ 1. We can now set λ = (2c)−1/3, and obtain E[X] ≤ λn/2. By the standard
expectation argument, there exists R ⊂ Gn, |R| = λn, with |X| ≤ λn/2. Since R ⊂ Gn, R
determines O(n2/

√
log n) distinct distances.

In the second step, we employ the deletion method (see, e.g., [1, Ch. 3]), and delete one point
of R from each bad 4-element subset determined by R. Since there are at most λn/2 bad 4-
element subsets in R, at most λn/2 points (out of λn) are deleted, no bad 4-element subsets are
introduced, and the remaining (at least) λn/2 = Ω(n) points in R determine no bad 4-element
subset. As such, there exists an Ω(n)-element point set in the plane without the seven patterns
π1, π3, π4, π5, π6, π7, π8, that determines O(n2/

√
log n) distinct distances. This concludes the proof

of Theorem 1.

5 Conclusion

A point set is said to have property Φ(4, 5) if every 4 elements determine at least 5 distinct distances.
An examination (Lemma1 in Section 2) indicates that a planar point set has property Φ(4, 5) if
and only if it does not contain any of eight forbidden 4-element patterns, πi, i = 1, . . . , 8. The
existence of n-element point sets without the three patterns π1, π2, π3, that determine only o(n2)
distinct distances was previously known. Here we established the existence of n-element point sets
without the seven patterns π1, π3, π4, π5, π6, π7, π8, and determining o(n2) distinct distances.

A challenge for our construction seems to be limiting the number of parallelograms; as shown
in Lemma 3, G√n determines a large number, Θ(n3). It is worth noting that while the existence
of parallelograms appears as a serious obstacle for the randomized construction, their absence
is guaranteed in the earlier deterministic construction (point set Sn from [3], also described in
Section 2). The existence of point sets missing all eight forbidden patterns and determining only
o(n2) distinct distances remains open; as such, the conjecture of Erdős currently remains unsettled.
We have shed some light on the problem of distinct distances in point sets with property Φ(4, 5)
and perhaps made some partial progress towards its resolution. Three relevant questions are:

Problem 1. Is there a Θ(n) size subset of Gn that avoids all eight forbidden patterns?

Problem 2. Is there a Θ(n) size subset of Sn that avoids all eight forbidden patterns?

Problem 3. Is φ(n, 4, 5) super-linear in n?

9



It is conceivable that all these questions have positive answers. In any case, reducing the gaps
between the upper and lower bounds in the first five entries of Table 1 remain as future challenges.
This table should not by any means be interpreted as containing all interesting questions that one
could formulate in this regard. In particular, the lack of entries with subquadratic upper bounds
deserves attention.
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