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Abstract

New tight bounds are presented on the minimum length of plstnaight line graphs connecting
given points in the plane and having convex faces. Spedificaé show that the minimum length of
a convex Steiner partition for points in the plane is at moé}(log n/ loglogn) times longer than a
Euclidean minimum spanning tree (EMST), and this boundadst possible. Without Steiner points,
the corresponding bound is known to Belogn), attained forn vertices of a pseudo-triangle. We
also show that the minimum length convex Steiner partitibn @oints along a pseudo-triangle is at
mostO(loglogn) times longer than an EMST, and this bound is also the bestipes®©ur methods
are constructive and lead €(n log n) time algorithms for computing convex Steiner partitionsihg
O(n) Steiner points and weight within the above worst-case bsimboth cases.

1 Introduction

Geometric spanner networks fargiven points in Euclidean plane have been studied extdgsjyarticu-
larly in the last 20 years [15, 35]. Some desirable propemiesuch spanners are constant stretch factor,
constant degree, weight proportional to the Euclideanmmiim spanning tree, and otherscénvex Steiner
partition for a setS of points in the plane is a planar straight line graphvhere the vertex set a@F con-
tains S and the boundary of every face is a convex polygon; spedifioalery bounded face is convex,
and the unbounded face is the complement of a convex poly§yaonvex (non-Steiner) partitiohas the
additional property that every vertex Gfis a point inS (i.e., there are no Steiner vertices). Similarly, one
can considefteiner triangulationandtriangulationsfor a point setS. Clearly, every triangulation fof
is a convex partition foiS, and every Steiner triangulation fofris a Steiner convex partition fa¥. The
weightof a planar straight line graph or network is the total Ewedid length of its edges. We denote by
W = W(S) the weight of a Euclidean minimum spanning tree (EMST) fomédipoint setS. Every
spanning network fof is at least as heavy as the Euclidean minimum Steiner trég whose weight is
known to be at leagt’/2 [19].1

A convex (non-Steiner) partition or triangulation fopoints is a planar graph onvertices, hence it has
O(n) edges. Since the weight of each edge is at Midsthe weight of a convex partition or triangulation
is trivially bounded byO(Wn). This naive bound is tight apart from a constant factorkpatrick [24]

*A preliminary version of this paper appeared in Breceedings of the 19th ACM-SIAM Symposium on Discreteriftigus,
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exhibited sets of. points, shown in Figure 1(a), where the minimum weight of aogpvex partition is
Clarkson [10] proved that any set af points in the plane admits a Steiner triangulation of weight

O(Wlogn), and Eppstein [14] showed that this bound is the best pesditis construction consists of 4

vertices of a square and— 4 points evenly distributed along a circle placed in the inteof the square,

see Figure 1(b). Both lower bound constructions consistoaritp along a reflex chain and a few other

points off this chain. These constructions can be realizithl avwertex set o) (1) pseudo-triangls, that

is, polygons with exactly three convex vertices calbedners see Figure 1(c).
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Figure 1:(a)n points for which any triangulation or convex partition hasight2(Wn). (b) n + 4 points for which
any Steiner triangulation has weigh{W logn), and any convex Steiner partition has lengiiV loglog n). (c) A
pseudo-triangle with the bisectors of its three cornetemg(d) A nonconvex face where compass routing fails to
route froms to ¢.

Our contribution. (i) Givenn points along a pseudo-triangle, we prove that they adminaedSteiner
partition of weightO (W log log n), and this bound is the best possible (Theorem 1). Recalthikateight
of a minimum Steiner triangulation may be as largéXa8” log n) for n vertices of a pseudo-triangle.

(i) Given n points in the plane, we prove that they admit a con&giner partition of weight
O(W'logn/loglogn), and this bound is the best possible (Theorem 2). This(isglog n)-factor im-
provement over the corresponding bound for minimum weiggin®r triangulations.

We prove our upper bounds constructively, usin@:) Steiner points in both cases. Our methods lead
to O(n log n) time algorithms in the real RAM model for computing converiSér partitions within these
bounds.

Networks with constant stretch factor. A spanner networkor setS of points in the plane is a connected
planar straight line grapy’ whose vertex set contairts Thevertex dilation(also known astretch factoy

of GG is the maximum ratio between the length of the shortest pathand the Euclidean distance for any
pair of points inS. In contrast, thgeometric dilationof G is the maximum ratio between the length of the
shortest path itz and the Euclidean distance for any two points, at vertizem edge®f G.

For theQ (W log n/loglogn) lower bound, listed above in (i), on the length of a minimuteier
partition of a general point set, it is crucial that the untded face in a convex partition is required to be
the complement of a convex set. If we drop this condition étilltrequire that alboundedaces be convex),
then the minimum weight network would be the minimum Stetrnes, which has only a single, unbounded
face. We show that the (W log n/ log log n) lower bound holds even if we replace the convexity condition
on the unbounded face by another condition on the stret¢brfatle present (Theorem 3}element point
sets for which any spanner network whose stretch factofrig and whoséoundedfaces are convex, has



weightQ(W log n/loglogn). The condition on the stretch factor rules out the EMST in s@ases, for
instance, fom equally spaced points along a circle.

It is known that givem points in the plane, there is a plane spanner network tha ¢hort namely,
it has weightO(W); (ii) is small namely, it hasO(n) vertices and edges; and (iii) has constant vertex
dilation [4, 31]. Recently, we have shown [12] that prop€iiiy can be strengthened by requiring constant
geometric dilation rather than constant vertex dilatiofere is a network plane spanner network with
properties (i), (i), and with constant geometric dilatiohVe observed that some of the faces of such
networks are often non-convex. Theorem 3 shows that novezolaces are in general unavoidable in a
spanner network with properties (i)—(iii).

Motivation. Location-based routingalso known ageographic routinghas been studied extensively and
is considered one of the most promising routing protocolsmt@rconnection networks, sensor networks,
and mobile networks [16, 23]. Even abstract networks aenambedded in Euclidean space (with “virtual
coordinates”) to be able to use location-based routing3Z839]. In geographic routing, each node stores
its geographic coordinates, and makes routing decisiosedoan the coordinates of the packet destination,
eliminating expensive routing tables. Variants differfie number of bits carried along with a packet and
in the amount of information stored at each node. A mininhatiedel iscompass routing27], where

(i) the packets carry no routing information other than tugét's coordinates, (ii) each node knows only
its own coordinates and the directions of the adjacent edges (iii) they route each packet on a link
whose direction is closest to the current direction of thigea Compass routing works on the Delaunay
triangulation of a point set, as it was shown in [6]. As memtid earlier, the Delaunay triangulationof
points in the plane may b@(n) times heavier than an EMST [24]. However, Betral. [2] showed that
for every setS of n points in the plane, there is a super §&tS C ', with |S’| = O(n), such that the
weight of the Delaunay triangulation &f is O(W logn). ThisO(W log n) bound is the best possible due
to Eppstein’s lower bound on minimum weight Steiner tridagans [14].

A randomized version of compass routing guarantees dgliverany convex network [3]. The deter-
ministic compass routing, however, can easily run into g@labfails for some source-destinations pairs
in nonplanar graphs, and in planar straight line graphs sdthe bounded faces non-convex (Figure 1(d)).
Moreover, any deterministic memoryless routing protoedlsfon some convex network [5]. It is worth
noting that many competing protocols, such as face roufiipgallow O(1) memory carried along with
each packet and they guarantee delivery on any plane graghOl) memory one can also guarantee
that each packet is routed along a path at most constang-tonger than the Euclidean distance between
source and destination [6, 21].

Related results. In this paper, we prove tight worst-case upper bounds on themmam weight convex
Steiner partition for points in the plane in terms af andW, and present polynomial-time algorithms for
computing convex Steiner partitions within these boundspblynomial exact or approximation algorithm
is known for computing theninimumconvex Steiner partition faot given points. The problem is not known
to be NP-hard, either, although we suspect that this is the.ca

The related minimum weight triangulation problem has seanymevelopments in the last few years.
Mulzer and Rote [34] proved that computing the minimum weigiangulation is NP-hard. Remy and
Steger [40] gave a quasi-polynomial time approximatioresad for minimum weight triangulation. Lev-
copoulos and Krznaric [29] proposéd n log n) time algorithms for constant-factor approximation of the
minimum weight triangulation and the minimum weight conpaxtition, based on earlier work by Plaisted
and Hong [38]. Eppstein [14] gave &Mn log n) time algorithm for computing &16-factor approximation
of the minimum weight Steiner triangulation afpoints. Gudmundsson and Levcopoulos recently gave a



tight O(W log n) upper bound on the minimum weighbseudo-triangulatiorof n points in the plane [20].
In a minimal pseudo-triangulation, every vertex is incidtena reflex angle, and so this is, in some sense,
the opposite of convex partition.

The minimum weight convex patrtition problem restricted lte tnterior of a simple polygon can be
solved exactly. Gilbert [18] and Klincsek [25] independgrgave O (n?) time algorithms for computing
a minimum weight convex partition of a simple polygon withvertices using dynamic programming.
Levcopoulos and Lingas [30] showed that the minimum weigdlat @onvex Steiner partition of the interior
of a simple polygonP with n vertices,m of which are reflex, is alway®(|P|logn) and sometimes
Q(|P|logm/loglogm). Here| P| denotes the perimeter &f. Our Theorem 4 in Section 3 shows that this
lower bound is tight: Every simple polygaR with m reflex vertices admits a convex Steiner partition of
weightO(|P|log m/loglogm).

The minimumnumberconvex partition problem asks for the minimum number of faitea convex
partition ofn points. Knauer and Spillner [26] recently showed that amnain-element point set admits
a convex partition with at mos£2-2* faces (improving an earlier bound &#:~18 by Neumann-Larat
al. [36]); Garcia-Lopez and Nicolas [17] gave a lower boundstruction of!2 — 2 for n > 4. Knauer
and Spillner [26] also gave a polynomial tirﬁ%approximation for the minimum number convex partition
problem. No corresponding results are known for the mininmumber convexSteinerpartition problem.
Restricted to simple polygons, these problems have effigelutions. Keil and Snoeyink [22] gave an
O(n?) time algorithm for computing the minimum number convex iiart of a simple polygon with
vertices; this problem is NP-hard for polygons with hole2][3Chazelle and Dobkin [9] gave an(n?)
time algorithm for the minimum number convex Steiner pianitof a simple polygon withe vertices.

Definitions and notations. If A is a finite set, let+ A denote the cardinality ofl. For a polygonal curve
~, let |y| denote the length (or weight) ef For a polygonP, let |P| denote the perimeter d?. A convex
chain is a polygonal chain whose vertices are consecutieE®s of some convex polygon. miflexchain
is a convex chain appearing on the boundary of a nonconvexgpolwith all internal angles of the chain
larger thanr. Let~ be a convex (or reflex) chain with endpoinatandb; see Figure 2(a). Thiirning angle
of v is the angle in0, 2x] of the rays along the first and last segments ofThe width of  is the width
of the smallest parallel strip that contaifisand is parallel to the segmedb connecting the endpoints of
~. Denote byh(v) the half-plane containing determined by the line other that bounding this strip.
A pseudo-triangldas a simple polygon with exactly three vertices with interamgles less than, called
corners see Figure 1(c).

2 Vertex sets of pseudo-triangles and reflex chains

In this section, we prove a tight bound on the minimum weigirivex Steiner partition for a vertex set
of a pseudo-triangle. The corners partition the pseudmgie into threaeflex chains(some of which
may consist of a single segment). Each reflex chain is a podlgeath of reflex internal angles and total
turning angle of at most. If all three reflex chains of a pseudo-triandgPeare straight line segments then
P is a triangle; if two reflex chains are straight line segméinén P is aone-chain pseudo-trianglesee
Figure 1(a).

Theorem 1

(i) For every setS of n points lying along a pseudo-triangle, a convex Steiner ipant of weight
O (W log log n) withn + O(y/n) Steiner points can be computed(n) time.



(i) For everyn, there is a seb of n points along a pseudo-triangle such that any convex St@iasition
for S has weighQ(W loglog n).

Upper bound. We construct a convex Steiner partition f§rby augmenting the vertex setwith new
(Steiner) vertices and new edges as follows. Refer to Fig(ck Add the 3 edges of the convex hull
conv(S) of S to the network. Each edge has weight at nidsthence their total weight i©(W). Since
the three polygons between the convex hull of the pseudogle and the three reflex chains are convex, it
suffices to partition the interior of the pseudo-trianglérstfwe reduce the problem to one-chain pseudo-
triangles. Note that the weight of a reflex chainfis less than twice the diameter & hence|P| =
O(W).

Lemma 1 The interior of every pseudo-triangleé with n vertices can be partitioned into three one-chain
pseudo-triangles and a (possibly degenerate) triangl@glihree line segments of total weight| P|).

Proof. The bisector of an interior angle df at a corner separates the two adjacent reflex chairi?. of
The bisectors of the three corners bound a (possibly degendriangleA lying in the interior of P; see
Figure 1(c). Consider the line segment along each biseetwrd®n a corner and its intersections with the
other two bisectors. These segments jointly partition titerior of P into three one-chain pseudo-triangles
(each adjacent to a reflex chain@f andA. Each segment is shorter than a diagonaPphence its weight

is at most P|/2. The total weight of the three segment€i§ P|). O

Lemma 2 The width of a convex chaimof turning anglea, 0 < a < 7, is at mostg|~|.

Proof. Draw a circle in whichub is a chord of inscribed angle — «.. Note thaty must lie in the circular
disk cap bounded by the chot@, otherwise its turning angle is more than The width of this cap is
(labl/2)sin(a/2) < aly|/4, hence this is also an upper bound on the width.of O

c

Figure 2:(a) The a reflex chain of widthy and turning anglex. (b) A one-chain pseudo-triangle with corners,
andc, and with reflex chaingg, A1, A2, and)s. (c) In stepi, we choose a vertex sd;, halfplanesi(v) for v € T';.

Lemma 3 The interior of every one-chain pseudo-triandtewith n vertices has a convex Steiner partition
of weight at mosO (| P| log log n) with at most+O(/n) Steiner points. Such a partition can be computed
in O(n) time.



Proof. Denote the corners of a one-chain pseudo-triatfgjley a, b, andc such that the reflex chaikg
betweena andb hasn — 3 internal vertices, and the other two reflex chains are the diegmentsic
andbc; see Figure 2(b). We partition the interiorn(P) of P by pairwise non-crossing reflex chaing
i=1,2,...,t = O(loglogn). Each reflex chain connects segmentandbc, and)\; lies in the interior of
the one-chain pseudo-triangle bounded\hy,, ac, andbe. Itis clear that the weight of each reflex chain is
at mostjac| + |bc|. The last reflex chainy,, will be a single segment, and so the portiorof P) bounded
by X:, ac, andbc is a triangle. Once these polygonal chains are construatedill need to subdivide the
facesB; C int(P) between consecutive reflex chaing, ; and)\;, into convex faces. Note that the vertices
of \; areconvexvertices ofB;, and the internal vertices of;_; arereflexvertices ofB;. PartitionB; by
rays emanating from each reflex vertexifand subdividing the reflex angles into convex angles. We will
choose the chains; and the rays that partitio?; such that the portion of the rays lying i8; have total
weight proportional to the weight of; for everyi = 1,2,...t.

We define the reflex chaing, i = 0,1, ..., ¢, inductively. )\, is the given reflex chain of the one-chain
pseudo-triangle?. Assume tha; is given, and we need to construgt, ;. We will partition \; into a set
I'; of subchains ordered along such that the width of each subchairC \;, wherey € T, is at most the
average weight of the segmentsyinFor everyi, let m; denote the number of internal vertices)qf and
let o; < 7 denote its turning angle.

Initially, we havei = 0; \q is the reflex chain of?, andmy = n — 3. As long asn; > 0, construct the
chain\;; 1 as follows. We choose a subs#f of vertices of)\;, and partition); into a setl"; of subchains,
each lying between consecutive verticesdn Choose the splitting pointd; by the following simple
algorithm: Put the endpoint; N bc of \; into A;. Traverse\; from \; Nbc to \; Nac. Denoting byy, C A;
the subchain between the previous vertexdgfand a vertexy € \;, putw into A; if ~, is the maximal
subchain with at most,/m; | segments and turning angle of at mesf,/m;. Finally, put the endpoint
A; Nacinto A; (this process is schematically shown in Figure 2(c)). Thalmer of subchains of; created
in this way is|T';| < 2,/m;.

Let C; be the intersection of the halfplankgy) for v € T';. Let ;11 be the portion of the boundary of
C; lying in P. Finally, for each vertex of each subchain € I';, partition B; by the ray emanating from
and perpendicular tb(). In particular, we draw two rays at the common endpoint oftaryconsecutive
subchains if’;. This completes the construction of the chajn; and the partition of3; into convex faces.

The weight of each ray drawn at a vertex of a subchaia I'; is at most the width ofy, which is at
mosto;|y|/(4y/m;) < §lv|/+/mi by Lemma 2. By construction, eaghe I'; has at most/m; vertices.
Hence the total weight of the rays that partitiBy, ; into convex faces is

T |y T T T
E: mil 1) 2. _<_.§ = —|N| < =|P]|.
vel'i vel's

Sincem;1 < |T| < 2,/m;, we also haveé = O(loglogn). Summing over ali = 0,1,...,¢ — 1, the
total weight of the resulting convex Steiner partitionfofs O(| P|-t) = O(|P|loglog n), as required. The
number of Steiner points is upper bounded by

ST@+m) =20t +1)+ > mi < O(loglogn) + > 217V - (n — 3)1/% = n + O(vn).

1=0 =0 1=0

Each polygonal chain\;;; is constructed in a single traversal ®f, in O(m;) time. Between the
chains\; and \; 11, every segment splitting a reflex angle at an internal vestex; hits ac, bc, or one of
two possible edges of;1, so each ray can be computed(}1) time. Hence, the total runtime of the
partitioning algorithm isD(3>!_ m;) = O(n). O



Lemma 4 The interior of every pseudo-triangle with n vertices has a convex Steiner partition of weight
O(|P|loglog n) withn + O(y/n) Steiner points. Such a partition can be compute®{m) time.

Proof. Partition the pseudo-trianglB by Lemma 1 into three one-chain pseudo-triangles and aifpss
degenerate) small interior triangle, as in Figure 1(c). sTartition has weighO(|P|) and at most 3
Steiner points. By Lemma 4, the interior of each pseudogtiaacan be partitioned into convex faces using
n + O(y/n) Steiner points and edges of total weight| P| log log n) in O(n) time. O

This completes the proof of the upper bound in part (i) of Theol.

Lower bound construction with points along a reflex chain. We prove that the weight of every convex
Steiner partition for a sef of n + 4 points arranged as indicated in Figure 1(b) is at I€H3 log log n).
Since this construction can be tiled with 5 convex faces andigruent pseudo-triangles as shown in the
figure, we also obtain aft(1 log log n) lower bound for the minimum Steiner partition ofvertices of a
pseudo-triangle.

Consider an integet such thaflog log n is even. LetS, be a set of» evenly spaced points on a circle
of unit radius centered at the origin let S be the union ofS, and the 4 vertices of a squafgat points
(+2, £2); see Figure 1(b). Clearl®) = conv(S). Denoting byiV,, the length of an EMST fof, observe
thatlim,, ., W, = 27 4+ 4(2v/2 — 1) ~ 13.60. For sufficiently large:, an EMST consists af — 1 edges
of conv(Sp) and 4 edges, each of lengtly/2 — 1, connecting the vertices @ to conv(Sp).

Let G be a convex Steiner partition fof. Forr > 0, denote byC(r) (resp. D(r)) the circle (resp.
disk) of radiusr centered ab. For0 < r < R, let K(r, R) = D(R) \ D(r) be the annulus between the
circlesC(R) andC(r). We construct inductively a sequencefof= (loglogn)/2 concentric circles of
radiil =g < r; < ... <r, < 3/2and show (in Lemma 7) that the length of the portiorColying in
each annuluss (r;, r;+1) is (1). This immediately implie$G| = Q(loglogn).

We say that a set of points on a circle”' is denseif every arc ofC' of size (measured by the angle
of apex at the center a@f') at leastdw/m contains at least one of the points. Along each citcle;), we
choose a dense sd; ¢ G N C(r;), which consists of some intersection points of the citCle:;) with
vertices or edges df. Initially, let Ao = Sy be the a dense set of, = n points of S alongC'(ry). We
next describe how we choose the radiyand the point sed; fori =1,2,... k.

We will choose the widths; = ;1 — r; of the annuli to satisfy the following two conditions:

1. ¢; should be small enough so that the cir€lér; ) intersectd in a large dense set of points.
2. ¢; should be large enough so that the length of the portic@ of K (r;, ;1) is at least(1).
We choose the radit; so that they satisfy the recurrencg.; = r; + 1/(9m;) fori = 1,2,...,k. The

following lemma ensures that we find a dense set of at lgasf points inC(r; 1) N G for everyi =
0,1,...,k—1,if ;41 < 3/2. This shows that

—1

m; >n® ", 1)
and we repeat the argumént= (log log n)/2 times, wheren; > 10 holds for every0 < i < k.

Lemma 5 For any two pointg, ¢ € C(r;) with Zpog > 1/,/m;, the chords of the circl€'(r;;1) whose
midpoints arep and g, respectively, are disjoint.

Proof. Consider two point, ¢ € C(r;) and letae = Zpoq. Recall that; 1 = r; + 9% If the chords of
the circleC(r;+1) with midpointsp andg, respectively, share a common endpoint, then
T T
CoOS ¥ = = -
Tiy1 r; + 9m;

7



Figure 3:A half-disk D whose boundary (black) Figure 4:The graphG contains a portion of length
consists of a segmentand a half-circley, and a  at leasts; in each half-disk lying in the annulus
convex partition (grey). K(ri,rit1)-

From the Taylor expansion of cosine, forc (0, Z] we have

2 2 4 2
(% (% « o

Hence, the chords with midpointsaandgq are disjoint if
< —. 3)

The inequality holds forv = 1/,/m; andr; > 1. a
The following simple lemma is crucial for enforcing the cerity of faces in the partition.

Lemma 6 Let D be a closed half-disk of radiuscentered ap and bounded by a diameter segmeisind
a half-circle v; see Figure 3. Let7 be network such that lies at a vertex or on an edge ¢f, and the
half-disk D is covered by convex faces@f Then the weight of the portion 6f lying in D is at leastr.

Proof. It is enough to show that every halfcircle centereg @nd lying in D intersects the network,
since then the lower bound on the weight follows by integratiAssume to the contrary, that there is a
halfcircley’ centered ap lying in D but disjoint fromG. Denote the endpoints of by ¢1,¢2 € s. The
points ¢; and ¢, are on opposite sides gfand lie in the interior of some faces 6f. They must lie in
distinct faces ofz, otherwise any point in the segmeniy,, including p, would be in the interior of the
same face by convexity. However, they must lie in the sameda€, since they can be connected by curve
~' disjoint from@G. This is a contradiction, hence every halfcircle centetedaad lying inD intersectss.

O

We next choose a set of points C C'(r;) NG inductively for everyi = 1,2, ... k. PartitionC(r;) into
2|v/mi/2]% < m;/2 congruent arcs. By the induction hypothesis,is a dense set along(r;), and so
there is a point of4; in each arc. Letd; C A, consist of exactly one point of; from every|/m,/2]-th
arc. The cardinality of\ is # A} = 2|\/m;/2] > \/m; if m; > 2. Draw the chords of circl€’(r; ) with
midpoints at points imd}. Note that each chord is tangentd@r;). The size of an arc between consecutive



points inA4 is at least

o |v/mi/2] — 1 S 1

20/mi/2)2 T i

if m; > 2. By Lemma 5, these chords 6f(r; ;) are pairwise disjoint, and determine disjoint caps of
C(ri+1). Recall that we assumed that diBKr; 1) is covered by bounded faces whenergn < 3/2. By
Lemma 6, every cap contains a pointGhn C'(r;+1). Let A; 1 consists of one point a N C(r;41) from
each cap. The cardinality of; 1 is m; 11 = #A, > \/m;. Moreover, the point sed;, is dense, since
every arc of size leadtr /m;; contains at least one entire cap, hence at least one paiht, of

Lemma 7 The total weight of the portion aoff that lies in K (r;,7;11) is at least1/50 for every: =
0,1,...,k—1.

Proof. Recall that the width o (r;,7;41) IS 141 — r; = ﬁ PartitionC'(r;) into |m; /2| congruent
arcs. Sinced; is dense, each arc of siZe/m; contains a point of4;. Pick one point of4; from every
other arc, and lefl’ denote the resulting set of at least; /4| points. Any two consecutive points if/

are separated by an arc of size at lesastm,. For every poinp € A/, construct a half-disk centered jat
with radiuse; and bounded by the tangent@r;) atp; see Figure 4. These half-disks are pairwise disjoint
and lie in the annulug(r;, 7,11). By Lemma 6, the weight of the portion 6f lying in each half-disk of
radiuse; is at least;. Hence, the length aff N K (r;, 7;41) is at least

; 1 1
i1fi= 4 — 50

O
A standard calculation using (1) gives that > logn holds for sufficiently large:. Note also that we

assumed in Lemma 7 that each annulig-;, ;11 ) is covered by bounded (convex) facesaf Since the
sequence offn;'s is non-decreasing, we have

k—1

k-1
k 1
;gi < ST <3 thereforer, = 1 —I—;z—:i <

N W

The disk of radiug /2 centered at the origin lies if). Since the annulK (r;,r;+1), for0 <i < k—1, have
pairwise disjoint interiors, and each annulus is coveretdynded faces af, we can apply Lemma 7, and
the total weight of is at least: /50 = Q(W log log n). This completes the proof of part (ii) of Theorem 1.

3 General point sets in the plane

In this section we derive asymptotically tight bounds onrhieimum length of a convex Steiner partition
for n points in the plane.

Theorem 2

(i) For n points in the plane, there is a convex Steiner partition WV log n/ log log n) weight and
O(n) Steiner points. Such a partition can be compute®{m log n) time.

(i) For everyn, there is a sef of n points in the plane such that any convex Steiner partitionStbias
weightQ (W log n/loglog n).



We also extend the lower bound construction and show thed eiren-element point sets for which any
spanner network with all bounded faces convex and stretithrfa(n) has weigh€2(W log n/ loglog n).

Theorem 3 For everyn, there is am-element point sef in the plane such that any spanner network$or
whose bounded faces are convex and whose stretch faetor)ismust have weighfe (W log n/ log log n).

Our upper bound in Theorem 2 is based on first partitioningctivevex hull of ann-element point
set into polygons, and then partitioning the polygons irdaovex faces. A convex Steiner partition of a
polygon P is a planar straight line gragh, where the boundary of every bounded facé-Gt convex and
all edges ofP are covered by edges 6f (in particular, there is no constraint on the unbounded ¢dce).
For convex Steiner partitions of polygons, we prove theofeihg.

Theorem 4 Every polygonP with n vertices,m of which are reflex, admits a convex Steiner partition with
O(|P|log m/ loglog m) weight andO(n) Steiner points. Such a partition can be compute®{m log n)
time.

The upper bound for the weight is the best possible, as it Wwasrs by Levcopoulos and Lingas [30].
Interestingly, in our lower bound construction in Theorenthid EMST is a path which can be completed
to a simple polygon by adding one edge. The resulting simaliggon P is, in fact, somewhat reminiscent
of the lower bound construction presented in [30].

3.1 Lower bound construction

Proof of Theorem 2(ii). For everyn > 4, we describe a set of at mastpoints in the plane for which any
convex Steiner partition has weigh{ W log n/ log log n). Refer to Figure 5. Lek € N be the maximal
integer such that* < n. Sincen > 4, we havek > 2 andk = ©(logn/loglogn). Consider a circular
arc subtended by an inscribed angle= 7 /(4k); that is, the central angle v = =« /(2k). Let 5 be a
polygonal path connecting + 1 points evenly distributed along this arc. We construct atigely, in k
steps, a polygonal path)., whose vertex set will be the point s&t The initial polygonal path is a straight
line segmentyy, = ab. In stepi = 1,2, ..., k, construct a polygonal pat by replacing each segmentf
~v;—1 by a scaled copy of the polygonal patrabove segmery, as illustrated in Figure 5. The polygonal
path~; consists oft’ segments of equal length. L6t denote the set of vertices of, fori = 0,1,... k.
Sincev; is a refinement of;_,, we haveS,_; C S;. By induction, we havetS; = k% 4+ 1. Our point set
for the lower bound construction & = Sj.. Observe that by the definition &f #5 = #S5, < n.

Every edge ofy; makes an angle of at mo&t with the z-axis. So every edge of the final curvg
makes an angle at mostv < 7/4 with thez-axis. Hence, an EMST d; is the pathy; for eachi (e.g., by
Prim’s algorithm). We give an upper bound on the weightof In each step, the increase in length of the
path is bounded by a constant factor:

|73 2 - a - 24k 14T <1+1
vie1|  2sina T a—a3/6 " 1—a/6 24k—7m 24k - k’

for k > 2. The weight ofy is |vz| < |yo| - (1 4+ 1/k)* < |ab| - e = O(|ab]), wheree stands for the base of
the natural logarithm.

Next, we show that the weight of any convex Steiner partitibfi is Q2 (|vx|-k) = Q(W log n/loglogn).
By Lemma 6, it is enough to construct a set of pairwise disjbaif-disks of total radii2(|ab| - k) such
that each half-disk is centered at a point$and is contained in the convex hull 6f Specifically, we
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construct disjoint half-disks of radiuab|/(32k") centered at at least half of the pointsSn\ S;_1, for
1=1,2,...,k —1 (but not for the last level, = k). So the total radii of these disks will be

k—1 k—1 . . .
#(Si\ Siz1) Jabl _ Jab] \~ K — k! Wlogn

I B I N T NI :
; 2 32k 64 ; i (Jab] - ) log log 1

The length of each segment of the pajhis at leastab|/k* because in each step, we replace a segment by
a sequence df segments of larger total length. If the diameter of the pohal paths is ¢, then its width
is

1—cosa 2sin? %

l
)= o>
{ = tan 5 2

[\l e}

(%

—. > —.

4 16k 8k

Since the vertices of a scaled copy of the patkc ~; lie along a circular arc, at leagt/2 of its £ — 1
internal vertices lie at a distance at leg&tl6k) from the diameter of (that is, at least half-width distance
from the chord of the circular arc). For each copy of the gatilong the paths; fori =1,2,... k-1
(except for the last level, = k), at each such vertex € 3, v € S; \ S;_1, place a half-disk of radius
lab|/(32k%) < £/(32k) centered at and bounded by the tangent line of the circular are. &or a fixed:,
let D; denote this set of congruent half-disks.

2sin o 4sin%cos%

Figure 5:Lower bound construction for = 2 : S = S3. Each segment is replaced with a sequence of 4 segments.
We place half-disks of radiygab|/(32k?) centered at at least half of the pointsdp\ S;_1, fori =1,2,...,k — 1.

It remains to show that any half-disk iff—}' D; lies in the convex hull of5, and that the half-disks in
u?;llD,- are pairwise disjoint. Note that the half-disksfip do not lie entirely belowy;, and soy; does
not separate half-disks if; and D, ;. We show that the half-disks iP; (i) are pairwise disjoint; (ii) lie
above curvey;_1, at distance at leagtb|/(32k*) from ;_1; (iii) lie below ~; 11 and their portions above
remains within distance at mdab|/(64k+2) from ;. (i) It is easy to see that the half-disksiin, centered
at vertices ofy;, are pairwise disjoint: The half-disks i; have radiusab|/(32k*). Consecutive vertices of
7; in the same copy gf are at leasiub| /&’ distance apart, and so thecoordinates of any two vertices of
(even in different copies of) are at leastos(r/4)|ab|/k! distance apart. (ii) By construction, the centers of
the half-disks inD; are abovey; 1, at distance at leagtb|/(16k*) from ~;_;. Hence every half disk id;
is abovey; 1, at distance at leagtb|/(32k") from~;_1. (iii) Consider a circle passing through the vertices
of a copy of3 along~;. Each edge off subtends an inscribed angle®fk = 7 /(4k?); and the diameter
of a half-disk centered at a vertex gfis tangent to this circle. Hence, at the center of each hgk-ith
D;, the incident edges of; make an angle of /(4k2) with the diameter of the half-disk. The portions of
the half-disk abovey; remain within distance at mosin(r/(4k?)) - |ab|/(32k%) < |ab|/(64ki*2) from
~;. Therefore the half-disks i®; lie below ;. 1, yet they are disjoint from any half-disk iP; ;. This
completes the proof of Theorem 2(ii). O

Proof of Theorem 3. We modify the previous construction as follows. [$%be a set of at mo$n points:
a setS; of n points distributed evenly on a circle of radius 2 centergti@brigino, and a seb; of at most
n points making our construction in Figure 5, starting fromagizontal segment, = ab centered ab,

wherel|ab| = 2. In particular,S is contained in a circle of unit radius centeredat
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An EMST of S consists of a polygonal path af — 1 edges connecting consecutive points along the
circle of radius 2, a polygonal path af — 1 edges connecting consecutive points alapgand a unit
segment connecting the two. Denoting B, the length of an EMST foiS, we havelim,,_.., W, <
2e + 4w + 1 = O(1). Consider a spanner netwotkfor S with stretch facton(n) and allboundedaces
convex. By the condition on the stretch factor, the shopesh between any two consecutive vertices of
conv(S) has lengtho(n) - 47/n = o(1). Hence the unbounded face is disjoint from the unit disk i§
sufficiently large. That is, all faces of the network that @othe unit disk are convex, and our previous
argument shows that the network has wei@flog n/ loglogn) = Q(W logn/ loglogn), as claimed. O

Remark. Consider again the point sét for the lower bound construction in Figure 5. LBtbe the
simple polygon obtained by connecting the two endpointnd b of .. Note thatP is z-monotone,
and |P| < 2W. We have given a lower bound on the total weight of the postioha convex Steiner
partition of S that lie in some pairwise disjoint half-disks. Observe ttisse half-disks are disjoint
from the edges of” and lie in the interior ofP. It follows that any Steiner partition aP has weight
Q(]P|logn/loglogn). In our construction, the convex vertices Bfarea, b, and the vertices), \ Sx_1
introduced in the last level. The number of reflex verticemis= O(n/k) = ©(nloglogn/logn), and
sologm/loglogm = ©(logn/loglogn). This provides an alternative construction for the loweunrmb
of Q(|P|log m/loglogm) on the minimum weight Steiner partition of a simple polyg@mvith m reflex
vertices, first established by Levcopoulos and Lingas [30].

3.2 Upper bound—reduction to flat poygons

Let S be a set ofn points in the plane. We show th&t admits a convex Steiner partition of weight
O(W logn/loglog n) by reducing the partition problem for points to the corresping partition problem
for polygons. We proceed as follows. Compute the convexdndlan EMST of5S. The EMST partitions
the interior of the convex hull into weakly simple polygo®8] Section 10.2]. The total perimeter of these
polygons is at mosti¥. Since the maximum degree of an EMST is at most 6, the totabeuif vertices

of these polygons is at moét:.. We construct a convex Steiner partition for each of thedggpos, and
then Theorem 4 completes the proof of Theorem 2(i).

We now present the proof of Theorem 4. Given a simple polyBowith n vertices,m of which are
reflex, we construct a convex Steiner partitionfbin three stages. The first stage (Lemma 8) partitions the
interior of P into convex polygons anchonotone polygon&efined below) by introducing new edges of
total weightO(|P|). The second stage (Lemma 10) partitions the interior of eactonotone polygon\/
into convex polygons and monotodeflat polygonqdefined below) introducing new edges of total weight
O(|M]). The third stage (Lemma 11) partitions every monotone lpidygon F into convex faces by
adding new edges of total weight(| F'| log m/ log log m). We proceed with the details.

a
v
/\/\%b \D
S

(a)

Figure 6:(a) A 1-flat polygonP. (b) A polygonP and a domairD(P, s) spanned by a sideof P.
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Definitions. A diagonalof a polygonP is a line segment connecting two verticesthrough the interior
of P. A chordof a polygonP is a line segment that connects two points on the boundafy (et vertices
or on edges ofP) and whose relative interior is disjoint from the exteriérfd. For a parameter > 0, a
polygon P is e-flat if it is bounded by @aseside s and a polygonal curve connecting the endpoints ef
and lying in one of the closed halfplanes determined bsuch that for any chordb of P with a,b € ~,
the portion ofy betweena andb has weight at mostl + ¢)|abl|; see Figure 6 (i). In particular, we have
vl < (1+e)lsl.

Letd be adirection, represented by a directed or undirected line or line seg(ean, a coordinate axis).
A polygonal pathy is d-monotonef the intersection ofy with every line orthogonal td is connected (that
is, the intersection is a point, a line segment, or the emgtly & polygonP is d-monotonéf it is bounded
by a base side parallel tod and ad-monotone pathy connecting the endpoints af We sometimes
omit the directiond, and call a polygomonotondf it is d-monotone in some directiot (Note that our
definition of monotone polygon is slightly different frometistandard one [1]).

Denote byP the closed polygonal domain bounded By that is, P is the closure ofnt(P). For a
polygon P and a sides, let D(P, s) be the set of all pointp € P such that the line segmepy lies in P,
q € s andpg is orthogonal tos; refer to Fig. 6(ii). Let the polygod/ (P, s) be the boundary of the domain
D(P, s). Note thatM (P, s) is s-monotone.

Lemma 8 Every polygonP with n vertices admits a partition into convex faces and monotaiggons,
such that the partition ha®(|P|) weight,O(n) Steiner points, and can be computed’n log n) time.
Furthermore, every reflex vertex of a monotone face is a reéerex ofP.

Proof. We partition P recursively. The input of each recursive step is a p@irs), where( is a simple
polygon ands is a side ofQ). For a polygon®, letv(Q) denote the number of vertices @f Initially, we
start with the pai P, s¢), wheresy is an arbitrary side oP, andv(P) = n.

One recursion step works as follows (refer to Figure 7): Wegiven a pair(@, s). Stop if @ is
s-monotone or convex. Otherwise compute thmonotone polygonV/(Q, s) spanned by in Q. The
edges ofM (Q, s) partition @ into polygonal faces. Denote the resulting polygons oetsiflM (Q, s) by
Q1,Q2,...,Q:, for somet > 1. The polygonM (@, s) has exactly one side adjacent to ea:hwhich we
denote bys;. We havev(Q;) < v(Q) fori=1,2,...,t.

Casel Iff = 1 andv(Q1) < v(Q)] or [t > 2], then partition) along all segments; and recurse on
(QZ’,SZ') fori = 1,...,t.

Case 2 Ift =1 andv(Q1) = v(Q), then find a chordf of ), parallel tos; such thatf Z s, the endpoints
of f lie on the edges af); adjacent ta1, andf contains a vertex af);; see Figure 7(c). Partitiofy
along f into a convex quadrilatera@), adjacent tas; and polygong)’, @5, ..., Q,,, for somet’ > 1.
EachQ’ has exactly one sidé€ along f. Recurse offQ’, s) fori =1,...,t.

First, we estimate the weight of the partition. Consider step of the recursion. In CaseQ@,is parti-
tioned along the sides @/ (Q, s) perpendicular ta, and the monotone polygaW (Q, s) is discarded from
further consideration. The partitioning edggs: = 1,2,...,t, become the base sides in the subproblems
(Qi, ;). Charge the weight of each to the common boundary df/(Q;, s;) and the input polygorP.

The weight of this portion of the boundary 8f (Q;, s;) is at leasts;, and will not be charged again—since
M(Q;, s;) is discarded in the next step of the recursion. In Casggig,partitioned along a chorfl perpen-
dicular tos, and a convex quadrilaterély, which is strictly larger thad/ (Q, s), is discarded from further
consideration. The edge$, i = 1,2,...,t, along f become the base sides of the subproblems. Charge
the weight of eacls, to the common boundary df/ (Q’, s;) and the input polygor® as above. Over all,

79
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each portion of the boundary @t is charged at most once. Hence the total weight of the newsedgs
most|P|, and the weight of the entire network (includif) is at most2| P|.

(f)

Figure 7:Partitioning a polygorP into convex and monotone polygons.

Next, we estimate the number of Steiner points. For a polygoetcount(Q) = 2v(Q) — 6. Consider
a step of the recursion that produees 1 subproblemg@;, s;),« = 1,2,...,t. In Case 1, at mostnew
Steiner points are created (at most one endpoint of ggcin Case 2, at most 2 Steiner points are created
(namely, the endpoints of the chofd. So in both cases, at maat Steiner points are created. We claim
that

t
Z count(Q;) < count(Q) — t.
i=1

That s, the total count decreases by at leastitially, count(P) = 2n—6. We havecount(Q) > 2-:3—6 =
0 for any subprobleni@, s) throughout the recursion. This gives an upper bour@{ ®f — 6) = 4n — 12
on the number of new Steiner points created altogether.

We now justify the above claim. For a subproblé@, s), let V(Q, s) denote the set of vertices f
with the exception of the endpoints ef Clearly, #V (Q,s) = v(Q) — 2. As above, consider a step of
the recursion that produces subproblef@s, s;), i = 1,2,...,t. The setd/(Q;, s;) are pairwise disjoint
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andU!_, V(Qi,s;) € V(Q,s). Therefore,S"i_ (v(Q;) —2) < v(Q) — 2, and>_!_, count(Q;) <
count(Q) —2(t—1). Fort > 2, we havet < 2(t— 1), so our claim is established in this case. Now assume
thatt = 1 (i.e., a single subproblert®), s1) is produced). In Case 1, we assumed &) < v(Q). In
Case 2, a vertex d@f incident to the chord belongs td/ (@, s) but lies at the base side of the subproblem,
hencev(Q1) < v(Q). This implies that for = 1, we also haveount(Q;) < count(Q) — 2 in both cases.

It is easy to implement the algorithm @(n logn) time. Assume w.l.o.g. thaf is horizontal. Then
every partitioning segment is axis-parallel, and is inotd® a vertex ofP or a Steiner point. Using a
ray-shooting data structure for the polygf8], compute all axis-aligned rays from every vertextofn
advance; and sort the heads of rays along each edge Bfuring the partition algorithm, we insert new
rays from every new Steiner point. Shoot a ray from the emdpaif s; orthogonally tas; into the interior
of Q; (in Case 1) and from the endpoints pbrthogonally tof in the interior ofQ’ (in Case 2). The rays
allow computing each polygoi (@, s) in time proportional to its number of vertices. The sorte df
ray heads along the edges allows finding the segriémtident to a vertex of°. a

Consider now a:-monotone polygorP with a horizontal base. LetC denote the set of all chords of
P whose endpoints are not in the interiorsofand let’{ C C denote the set of horizontal chords. For every
ab € C, let u(ab) denote the portion of the boundary Bfbetweern: andb that does not contaisn

Lemma9 Let P be axz-monotone polygon with a horizontal base If there is a constant > 0 such
that |1(ab)| < (1 + k)|ab| for all horizontal chordsab € H, then|u(ab)| < (1 + x)v/2|ab| for all chords
ab € C.

Figure 8: A chordab in a monotone polygo® with a horizontal base, the boundary patp(ab) (bold), and the
xz-monotone pathr(ab) (dashed).

Proof. Let ab € C be a chord ofP; see Figure 8. Assume thab is not horizontal, otherwisg(ab) <

(1 + k)|ab]. Assume without loss of generality thathas smallery-coordinate tharb. Let w(ab) be

an z-monotone path between and b such that every segment alondab) is either horizontal or lies
along an edge of. Since the weight ofr(ab) is at most that of an axis-aligned staircase path between
a andb, we have|r(ab)| < v/2|ab|. For each horizontal portion of(ab), say,cd C w(ab), we have
pled) < (1+ K)|cd|. Hencelu(ab)| < (1 + k)|m(ab)| < (1 + K)v/2|abl. O

Lemma 10 Everyz-monotone polygo#® with a horizontal base andn vertices admits a Steiner partition
into convex polygons and 1-flatmonotone faces such that the partition f@g P|) weight,O(n) Steiner
points, and it can be computed @(n logn) time. Furthermore, every reflex vertex of a face is a reflex
vertex ofP.

Proof. We sweep a horizontal linétop-down overP, and insert horizontal chords alodigvhen certain
events occur. Lef) denote the polygonal face in the current partition adjatetie bases. Initially, let
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Figure 9:Partitioning anz-monotone polygon with horizontal basénto convex faces and 1-flatmonotone faces.

Q@ = P. The faceQ is always anc-monotone polygon with base and each insertion of a horizontal chord
along/ cuts off a polygon fron@). The algorithm is designed so that each polygon cut off fpis either
convex or 1-flat with a horizontal base along the currenttfosf /. For every chordib € H lying along
the sweep-lin¢, we defineug(ab) to be the portion of the boundary ¢f betweena andb that does not
contains.

Sweep a horizontal liné from the top vertex down untél reaches the base If any of the following
two events occurs for a choeh € H lying along/, partition @) alongab into two faces, and lef) be the
face belowab.

Event 1. ug(uv) contains at least three vertices @fin its interior and|uq(ab)| = v/2|ab|.
Event 2. a or b is a reflex vertex of) and|uq(ab)| > v/2|ab|.

In each step, we inserted a chartland partitioned? along chords:b into two faces. The face above

or it is 1-flat andz-monotone with baseb by Lemma 9, withx = v/2 — 1. This face is discarded from
further consideration, and the remaining face (adjacesn) is partitioned recursively. In each step, we
discard a portion of weight at leagf2|ab| from the boundary of), and introduce a new boundary segment
of weight|ab|. If we charge the weight of each chatél uniformly to the portion of the polygorﬂ’ that it
replaces, then each point along the boundary & charged at moszl_l(\/i)‘l f :

total length of the partition (including the weight & is at most(1 + \/51_1)|P| O(|P)).

Next, we estimate the number of Steiner points. deeint () denote the number of vertices @fplus
the number of vertices @) with an acute interior angle. Initially, whe = P, we havecount(Q) < 2n,
since there are no more tharacute angles. We claim that every partition step decreases () by at
least one, and introduces at most two Steiner points. Tipsiésthat the number of new (Steiner) vertices
cannot exceedn. In Event 2, at least three vertices are removed ft@nand at most two new (Steiner)
vertices are created, neither of which may have an acutaant@ngle. In Event 1, one or two convex
vertices are removed and at most one new (Steiner) vertexedded, which does not have acute interior
angle. If only one vertex is removed frof, then the part of) aboveab is a triangle, andig(ab) > |abd|
is possible only if the triangle has an acute angle at thexapposite tab. This confirms our claim that
count(Q) strictly decreases in each step, and concludes the probédémma. O
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3.3 Upper bound—ypartitioning a flat polygon

In this section, we partition a monotone 1-flat polygon remaly. The intermediate polygons in the recur-
sion steps are not necessarily monotone or flat, howeverhidaee a very special structure: A polygéh

is aclamp polygorwith spineab if it is bounded by a convex chain (path)and ad-monotone polygonal
path~ (for some directiond), with both paths connecting the same two poinendb; see Figure 10. The
width of the clamp polygon is the width of the minimum strip that @ins the polygon and is parallel to
ab. Observe that every-monotone polygon is a clamp polygon, where the convex dsaime sides.

Figure 10:A clamp polygonP, bounded by a convex chain(in bold) and ad-monotone polygonal path.

Lemma 11 Every 1-flatz-monotone polygor” with a horizontal base ana vertices,m of which are
reflex, admits a convex Steiner partition with(|F'|log m/loglog m) weight andO(m) Steiner points.
Such a partition can be computeddnn + m logn) time.

Proof. Consider a 1-flat-monotone polygor’ bounded by a horizontal sidg and am:-monotone polyg-
onal pathyy. Assume thaf" hasn vertices;m of which are reflex. We partitio” recursively. We describe
a generic step of the recursion, where we are given a clanyg@ot) with r reflex vertices, bounded by a
convex chain and an-monotone polygonal path C ~,, and we want to partitio) into convex faces and
some clamp polygong;, each having at most/2 reflex vertices. We say that tlveeight of the problem
associated witld) is |y|. The polygonal path of @ will be partitioned among the subproblerfys; and so
the total weight of the subproblems in each level of the rgouris at mostyy|. In a recursion step, we will
introduce new edges of total weighX(|o|). Intuitively, it is enough to show that the “average depth” o
the recursion i®)(log m/loglogm), in order to establish & (W log m/log log m) bound on the weight
of the patrtition.

One step of the recursion. We are given a clamp polyga with » > 1 reflex vertices, a sping where
Q@ is bounded by a convex chainand a polygonal path C ~y. By rotating @, if necessary, we may
assume that the spineis horizontal, andy is d-monotone for some directios (which is not necessarily
horizontal). It is clear that any vertex ¢f with maximaly-coordinate is a vertex of. We also assume
that one of the vertices @ with minimal y-coordinate is a vertex of. This property holds for the initial
clamp polygonF', and we maintain the property for every clamp poly@@during the recursion. It follows
that|y| > 2w, wherew is the width of@. Letk = [|v|/w] > 2. We partition the polygonal pathinto at
leastk subpaths such that

(i) each subpath passes through at mgétreflex vertices of);
(i) each subpath passing through a reflex verte®) dfas weight at mosty|/k; and
(i) a furthest point ofy from the supporting line of the spine &f is the endpoint of a subpath.
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The partition is done by successively selecting the elesnaind setd C ~ of spliting points Refer to
Figure 11. The splitting points are selected as followsc®lane endpoint of in A. Move a pointp along
~ continuously from this endpoint to the other. If the subpatthy between the previous splitting point
of A andp € ~ satisfies any of the following conditions, then insginto A: (1) p is the (|r/k] + 1)
reflex vertex ofy along the subpath; (2) the weight of the subpath is at ledst and it passes through at
least one reflex vertex; (3) the weight of the subpath excegds andp is its first reflex vertex; (4p is a
the furthest point ofy from the supporting line of the spine ¢, which may be either above or below the
spine; or (5)p is the right endpoint of,. The cardinality ofA is at most2k + 1, with the two endpoints of
~, at mostk — 1 additional splitting points of type (1), at mast— 1 additional splitting points of types (2)
and (3), and the furthest point from the spine (4).

Next we partition the interior of) into a setF of at leastk polygons by using the pointd C ~ and by
drawing some new segmentsslfs z-monotone then drop a vertical segment from each pointA to the
convex chairns. If + is notz-monotone, however, additional splitting points may beessary. Lety, be
thelower envelopef ~ (that is, the set of points € v such that there is no other pointgfwith the same
z-coordinate and a smallgrcoordinate). Ify is z-monotone, then = ~,, otherwisey, C ~ consists of
several components. My is a vertical segment that connects distinct componenis,dhen the portion of
~ betweerp andq is called gpocket ofy bounded byq. For every point: € + in a pocket bounded by,
there is a line segment orthogonalddhat connects to pq, since~ is d-monotone. Now, connect every
splitting pointa € A to the convex chaim as follows. Ifa € ~,, then drop a vertical segment frairto the
convex chairv. If a is part of a pocket bounded by some vertical segmenthen inserip andg as new
splitting points, extend the vertical segmentto o, and connect to pq by a segment orthogonal tb Let
A’ denote the union ofl and the set$p, ¢} for eacha € A lying in a pocket bounded byg.

There are at mo&tk + 1 splitting points inA. Each vertical edge betweerand the convex chaim has
weight at mostv. The segments orthogonal dchave weight at mostw since F' is 1-flat and the weight
of a pocket bounded hyg is at mos|pq|, where|pg| < w. So the total weight of the partition edges is at
most

(2k +1)(1 + 2)w = (6k + 3)w < 8kw = 8 [%l w < SM%QU < 12|

Figure 11:0ne level of partitions for a clamp polygah

The splitting points inA’ partition the pathy into a sefl” of subpaths, satisfying conditions (i)—(iii). By
connecting consecutive points df along~, we obtain a polygonal patif (dashed path in Figure 11).

So far, we have partitione@ into a setF of polygons, each of which is bounded by a convex chain
and a path if". For each pattt € T, let s(3) C + denote the segment connecting the endpoints. of
Shift segmens(3) continuously to a positioi(3) such that it partitions the corresponding faceAinnto
a convex face and a clamp polygon with spitg); see Figure 11. Sincé(5)| < |s(5)|, the total weight
of the segmentg((), for all 5 € T', is |7/| < |y|. The total weight of all new edges introduced in one
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recursion step is at mo$2|y| + |y| = 13|~|. Partition all non-convex clamp polygons recursively Liafli
faces are convex. This completes the description of ouitiparalgorithm.

Analysis. AssumeF' is the initial 1-flat clamp polygon with vertices,m of which are reflex, a basg
and a polygonal pathy. (We can assume: is large enough, when needed.) Obviously, we haye< | F|.
At level j of the recursion; > 0, we construct a polygonal patty connecting the two endpoints of the
spines as follows. At the root level), is a straight line segmeny, = s(. At level j, we construct\; by
replacing some segmentsof_; with polygonal paths: If a segmentC \;_; is the spine of a subproblem
with at least one reflex vertex, theris replaced by the polygonal path (defined previously); if a segment
s C \j_1 is the spine of a convex clamp polygon in a subproblem, thisrreplaced by the (convex) chain
~ of that clamp polygon. We can establish a piecewise lineangwmorphismiH; : A\;_; — ;. If a
segments C \;_; is replaced by a polygonal patfi C ); of weight|+'|, then H; mapss to o’ while
increasing each portion aefwith the same factor. By transitivity, the compositif) o H;_10---oH;isa
piecewise linear homeomorphism betweagrand);. We next show that the weights of the approximations
A; monotonically increasgX;_i| < |A;|, for j > 1) but remain in the ranggo| < |A;] < |yo| < 2[so].
Consider the recursion treg. In 7', the subproblem at a terminal node at leyaet a convexclamp
polygon, and so the corresponding portion\@fis a portion of the initial path,. At the next level,j + 1,
only the clamp polygons adjacentig are further partitioned. Each non-terminal nade 7" corresponds
to a subproblem, where a spisgis replaced by a path, andv has at leask,, > 2 children (recall that
one step of the recursion partitions C -y into at leastk, subpaths). By the definition df,, we have
ky > |vwl/wy > |sy|/w,. Observe that the patf, reaches a vertex of, at distance at least, /2 from the

spines,, SO its weight is at least

"Y;‘ > 2\/(’31)‘/2)2 + (wv/2)2 = \/‘&;‘2 +wz2) > [su[V/1+ 1/k12)

Let nodesv(i), i = 0,1,...,t,in T form a path from the root to a leaf, wheréi) lies at level of the
recursion. If we follow a path(0), v(1), ..., v(¢) in the tree of the recursion, then the number of reflex
vertices in the subproblems decreases by a factor of athggsfor i = 0,1,2...,¢ — 2. We have zero
reflex vertices at a terminal node, and we may have fewer #an,, reflex vertices at the parent of a
terminal node. At any other nodei) € V(T'), the number of reflex vertices decreases by a factor of at
leastk, ;). Since at the root of" corresponds to the initial problem with reflex vertices, the product of
thek,; values along the path is boundediby

In any chainv(0),v(1),...,v(t) from the root to a leaf irf’, there are at mostlog m/ log log m nodes
with kv(z) > (log m)l/él, since((log m)1/4)4logm/loglogm — 9(loglogm)(log m/loglogm) _ glogm _ 4,

We next establish lower bounds on the weight of the appraximaaths);. In each step witlk, <
(logm)'/*, a segment, is replaced by a path/, of weight at leasts,| - v/1 + 1/(logm)'/2. In each
step withk > (log m)1/4, we use the trivial lower bound that a segmepts replaced by a path,, of
weight at leasts, |. Leth > 0 be an integer. We show that the total weight of those portadrike initial
segments, that undergo at least[log m/loglog m] steps that each expand the weight by a factor of at
least\/1 4 1/(log m)1/2 is at most|so|/2". This is immediate foh = 0; and if it did not hold forh > 1,
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then the weight of the final approximation pajhwould be

hlogm

| | > |SO| 1+ 1 2loglogm
Jol = on Vlogm
hyTogm

— ’80’ 1 + 1 m 2loglogm
2 Jogm

vesm \M
‘SO’ 2 2loglogm 2 2 ‘30’ > 2’30’,

v

for m > 2256, using the fact thatl 4 1/2)* > 2 for z > 1. This contradicts our assumption tiais 1-flat
and solv| < 2|sg|.

For anyh > 4 andj = h[logm/loglogm], we have|\; N yo| > (1 — 247")||, that is, the
common portion of\; and~, has weight at leagtl — 24~")|yo|. This implies that for any: > 4, at level
j = h[logm/loglogm], we are left with subproblems of total weight at moss|/2". At each level
of the recursion, we introduce new edges whose total wegghtdportional to the weight of the current
subproblems in that level. Therefore, fo> 4, the total weight of the new edges introduced between levels
h[logm/ loglogm] and(h+1)[logm/ loglog m] is at most(1/2) =Y O(|yo|)- [log m/ log log m]. This
also holds forh = 0, 1, 2, 3. The weight of the final convex Steiner partition Bfis bounded by

> 1\ logm logm logm
S (3) Ot || =0 (ol i)~ o (1] ).
Pt oglogm loglogm log logm

The number of Steiner points in levglof the recursion is proportional to the total number spigti
points created along,_;. Each splitting point in a sel lies at a reflex vertex or between two reflex
vertices ofyg; and there are at most one splitting pointbbetween two consecutive reflex verticesypf
Hence, there are at mat: — 1 splitting points along path; for all j > 0, and the number of Steiner
points isO(m).

The runtime of constructing the partition @3(n + mlogn). In an O(n)-time preprocessing step,
traversey, and for each convex chaif C ~, between consecutive reflex vertices, compute the weight
and build a binary search structure, which can report forerygualueq > 0 a pointp € in O(logn)
time such that the weight of the portion gfbetween its left endpoint angdequalsqg. In order to find the
splitting points in a clamp polygo®), we traverse the corresponding pathc ~, once. We have seen
that the number of reflex vertices traversed more thgng m/ log log m] times isO(m/2"), and so we
traverse reflex vertice® (m log m/ log log m) times in total. We can skip convex vertices, since we have
computed the weight ofy between consecutive reflex vertices. There is at most ontérgplpoint in A
between any two reflex vertices, each of which can be locatédlog n) time based on a binary search
structure. We spen@(m logn) total time on finding points ofi between reflex vertices. For connecting
the splitting points to the convex chainof the corresponding clamp polygap, we use a ray shooting
data structure [8] fo’, which can be constructed i@i(n) time and permitsD(log n) query time. Since
each segment(3) either connects the endpoints@®br is tangent to a reflex vertex 6f we can compute
s(0) in a single traversal of the reflex vertices/@f The total time for partitioning® is O(mlogn). This
completes the proof of Lemma 11. O

Lemma 11 was the last in the reduction chain, so the proof ebidm 4 is now complete.
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4 Conclusion

We deduced tight bounds on the weight of a minimum convextjmartof a point set in terms of their
Euclidean minimum spanning trees. The worst-case ratibefriinimum Steiner partition and an EMST
is ©(logn/loglogn) in general, and®(log log n) for the special case of pseudo-triangles. We conclude
with some remaining unanswered questions.

1.

2.

Our partition fom points hasD(n) Steiner points. Does every setiopoints admit a convex Steiner
partition of weightO (W log n/ log log n) and with onlyo(n) Steiner points?

Does every set of points admit a convex Steiner partition of weightiV log n/ log log n) and with
O(n) Steiner points, such that every facéas(that is, the ratio of the radii of the minimum enclosing
and maximum inscribed circles over all faces is bounded bymstant)? Networks with fat convex
faces are of interest because they have constant geomidtiord this follows from a result of [13].

. What is the minimum size and weight, in termsrofand W, of a Steiner network that supports

compass routing?
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