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Abstract

New tight bounds are presented on the minimum length of planar straight line graphs connectingn
given points in the plane and having convex faces. Specifically, we show that the minimum length of
a convex Steiner partition forn points in the plane is at mostO(log n/ log log n) times longer than a
Euclidean minimum spanning tree (EMST), and this bound is the best possible. Without Steiner points,
the corresponding bound is known to beΘ(log n), attained forn vertices of a pseudo-triangle. We
also show that the minimum length convex Steiner partition of n points along a pseudo-triangle is at
mostO(log log n) times longer than an EMST, and this bound is also the best possible. Our methods
are constructive and lead toO(n log n) time algorithms for computing convex Steiner partitions having
O(n) Steiner points and weight within the above worst-case bounds in both cases.

1 Introduction

Geometric spanner networks forn given points in Euclidean plane have been studied extensively, particu-
larly in the last 20 years [15, 35]. Some desirable properties of such spanners are constant stretch factor,
constant degree, weight proportional to the Euclidean minimum spanning tree, and others. Aconvex Steiner
partition for a setS of points in the plane is a planar straight line graphG where the vertex set ofG con-
tainsS and the boundary of every face is a convex polygon; specifically, every bounded face is convex,
and the unbounded face is the complement of a convex polygon.A convex (non-Steiner) partitionhas the
additional property that every vertex ofG is a point inS (i.e., there are no Steiner vertices). Similarly, one
can considerSteiner triangulationsandtriangulationsfor a point setS. Clearly, every triangulation forS
is a convex partition forS, and every Steiner triangulation forS is a Steiner convex partition forS. The
weightof a planar straight line graph or network is the total Euclidean length of its edges. We denote by
W = W (S) the weight of a Euclidean minimum spanning tree (EMST) for a finite point setS. Every
spanning network forS is at least as heavy as the Euclidean minimum Steiner tree ofS, whose weight is
known to be at leastW/2 [19].1

A convex (non-Steiner) partition or triangulation forn points is a planar graph onn vertices, hence it has
O(n) edges. Since the weight of each edge is at mostW , the weight of a convex partition or triangulation
is trivially bounded byO(Wn). This naı̈ve bound is tight apart from a constant factor: Kirkpatrick [24]
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exhibited sets ofn points, shown in Figure 1(a), where the minimum weight of anyconvex partition is
Ω(Wn).

Clarkson [10] proved that any set ofn points in the plane admits a Steiner triangulation of weight
O(W log n), and Eppstein [14] showed that this bound is the best possible. His construction consists of 4
vertices of a square andn − 4 points evenly distributed along a circle placed in the interior of the square,
see Figure 1(b). Both lower bound constructions consist of points along a reflex chain and a few other
points off this chain. These constructions can be realized with a vertex set ofO(1) pseudo-triangles, that
is, polygons with exactly three convex vertices calledcorners, see Figure 1(c).

(a) (b) (c) (d)

s

t

Figure 1:(a)n points for which any triangulation or convex partition has weightΩ(Wn). (b)n + 4 points for which
any Steiner triangulation has weightΩ(W log n), and any convex Steiner partition has lengthΩ(W log log n). (c) A
pseudo-triangle with the bisectors of its three corner-angles. (d) A nonconvex face where compass routing fails to
route froms to t.

Our contribution. (i) Givenn points along a pseudo-triangle, we prove that they admit a convexSteiner
partition of weightO(W log log n), and this bound is the best possible (Theorem 1). Recall thatthe weight
of a minimum Steiner triangulation may be as large asΩ(W log n) for n vertices of a pseudo-triangle.

(ii) Given n points in the plane, we prove that they admit a convexSteiner partition of weight
O(W log n/ log log n), and this bound is the best possible (Theorem 2). This is a(log log n)-factor im-
provement over the corresponding bound for minimum weight Steiner triangulations.

We prove our upper bounds constructively, usingO(n) Steiner points in both cases. Our methods lead
to O(n log n) time algorithms in the real RAM model for computing convex Steiner partitions within these
bounds.

Networks with constant stretch factor. A spanner networkfor setS of points in the plane is a connected
planar straight line graphG whose vertex set containsS. Thevertex dilation(also known asstretch factor)
of G is the maximum ratio between the length of the shortest path in G and the Euclidean distance for any
pair of points inS. In contrast, thegeometric dilationof G is the maximum ratio between the length of the
shortest path inG and the Euclidean distance for any two points, at verticesor on edgesof G.

For theΩ(W log n/ log log n) lower bound, listed above in (ii), on the length of a minimum Steiner
partition of a general point set, it is crucial that the unbounded face in a convex partition is required to be
the complement of a convex set. If we drop this condition (butstill require that allboundedfaces be convex),
then the minimum weight network would be the minimum Steinertree, which has only a single, unbounded
face. We show that theΩ(W log n/ log log n) lower bound holds even if we replace the convexity condition
on the unbounded face by another condition on the stretch factor. We present (Theorem 3)n-element point
sets for which any spanner network whose stretch factor iso(n) and whoseboundedfaces are convex, has
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weightΩ(W log n/ log log n). The condition on the stretch factor rules out the EMST in some cases, for
instance, forn equally spaced points along a circle.

It is known that givenn points in the plane, there is a plane spanner network that (i)is short, namely,
it has weightO(W ); (ii) is small, namely, it hasO(n) vertices and edges; and (iii) has constant vertex
dilation [4, 31]. Recently, we have shown [12] that property(iii) can be strengthened by requiring constant
geometric dilation rather than constant vertex dilation: There is a network plane spanner network with
properties (i), (ii), and with constant geometric dilation. We observed that some of the faces of such
networks are often non-convex. Theorem 3 shows that non-convex faces are in general unavoidable in a
spanner network with properties (i)–(iii).

Motivation. Location-based routing, also known asgeographic routing, has been studied extensively and
is considered one of the most promising routing protocols ininterconnection networks, sensor networks,
and mobile networks [16, 23]. Even abstract networks are often embedded in Euclidean space (with “virtual
coordinates”) to be able to use location-based routing [28,37, 39]. In geographic routing, each node stores
its geographic coordinates, and makes routing decisions based on the coordinates of the packet destination,
eliminating expensive routing tables. Variants differ in the number of bits carried along with a packet and
in the amount of information stored at each node. A minimalist model iscompass routing[27], where
(i) the packets carry no routing information other than the target’s coordinates, (ii) each node knows only
its own coordinates and the directions of the adjacent edges, and (iii) they route each packet on a link
whose direction is closest to the current direction of the target. Compass routing works on the Delaunay
triangulation of a point set, as it was shown in [6]. As mentioned earlier, the Delaunay triangulation ofn
points in the plane may beΩ(n) times heavier than an EMST [24]. However, Bernet al. [2] showed that
for every setS of n points in the plane, there is a super setS′, S ⊆ S′, with |S′| = O(n), such that the
weight of the Delaunay triangulation ofS′ is O(W log n). ThisO(W log n) bound is the best possible due
to Eppstein’s lower bound on minimum weight Steiner triangulations [14].

A randomized version of compass routing guarantees delivery on any convex network [3]. The deter-
ministic compass routing, however, can easily run into a loop: it fails for some source-destinations pairs
in nonplanar graphs, and in planar straight line graphs withsome bounded faces non-convex (Figure 1(d)).
Moreover, any deterministic memoryless routing protocol fails on some convex network [5]. It is worth
noting that many competing protocols, such as face routing [7], allow O(1) memory carried along with
each packet and they guarantee delivery on any plane graph; with O(1) memory one can also guarantee
that each packet is routed along a path at most constant-times longer than the Euclidean distance between
source and destination [6, 21].

Related results. In this paper, we prove tight worst-case upper bounds on the minimum weight convex
Steiner partition forn points in the plane in terms ofn andW , and present polynomial-time algorithms for
computing convex Steiner partitions within these bounds. No polynomial exact or approximation algorithm
is known for computing theminimumconvex Steiner partition forn given points. The problem is not known
to be NP-hard, either, although we suspect that this is the case.

The related minimum weight triangulation problem has seen many developments in the last few years.
Mulzer and Rote [34] proved that computing the minimum weight triangulation is NP-hard. Remy and
Steger [40] gave a quasi-polynomial time approximation scheme for minimum weight triangulation. Lev-
copoulos and Krznaric [29] proposedO(n log n) time algorithms for constant-factor approximation of the
minimum weight triangulation and the minimum weight convexpartition, based on earlier work by Plaisted
and Hong [38]. Eppstein [14] gave anO(n log n) time algorithm for computing a316-factor approximation
of the minimum weight Steiner triangulation ofn points. Gudmundsson and Levcopoulos recently gave a
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tight O(W log n) upper bound on the minimum weightpseudo-triangulationof n points in the plane [20].
In a minimal pseudo-triangulation, every vertex is incident to a reflex angle, and so this is, in some sense,
the opposite of convex partition.

The minimum weight convex partition problem restricted to the interior of a simple polygon can be
solved exactly. Gilbert [18] and Klincsek [25] independently gaveO(n3) time algorithms for computing
a minimum weight convex partition of a simple polygon withn vertices using dynamic programming.
Levcopoulos and Lingas [30] showed that the minimum weight of a convex Steiner partition of the interior
of a simple polygonP with n vertices,m of which are reflex, is alwaysO(|P | log n) and sometimes
Ω(|P | log m/ log log m). Here|P | denotes the perimeter ofP . Our Theorem 4 in Section 3 shows that this
lower bound is tight: Every simple polygonP with m reflex vertices admits a convex Steiner partition of
weightO(|P | log m/ log log m).

The minimumnumberconvex partition problem asks for the minimum number of faces in a convex
partition ofn points. Knauer and Spillner [26] recently showed that any planarn-element point set admits
a convex partition with at most15n−24

11 faces (improving an earlier bound of10n−18
7 by Neumann-Laraet

al. [36]); Garcı́a-López and Nicolás [17] gave a lower bound construction of12n
11 − 2 for n ≥ 4. Knauer

and Spillner [26] also gave a polynomial time30
11 -approximation for the minimum number convex partition

problem. No corresponding results are known for the minimumnumber convexSteinerpartition problem.
Restricted to simple polygons, these problems have efficient solutions. Keil and Snoeyink [22] gave an
O(n3) time algorithm for computing the minimum number convex partition of a simple polygon withn
vertices; this problem is NP-hard for polygons with holes [32]. Chazelle and Dobkin [9] gave anO(n3)
time algorithm for the minimum number convex Steiner partition of a simple polygon withn vertices.

Definitions and notations. If A is a finite set, let#A denote the cardinality ofA. For a polygonal curve
γ, let |γ| denote the length (or weight) ofγ. For a polygonP , let |P | denote the perimeter ofP . A convex
chain is a polygonal chain whose vertices are consecutive vertices of some convex polygon. Areflexchain
is a convex chain appearing on the boundary of a nonconvex polygon with all internal angles of the chain
larger thanπ. Letγ be a convex (or reflex) chain with endpointsa andb; see Figure 2(a). Theturning angle
of γ is the angle in[0, 2π] of the rays along the first and last segments ofγ. Thewidth of γ is the width
of the smallest parallel strip that containsγ and is parallel to the segmentab connecting the endpoints of
γ. Denote byh(γ) the half-plane containingγ determined by the line other thanab bounding this strip.
A pseudo-triangleis a simple polygon with exactly three vertices with interior angles less thanπ, called
corners; see Figure 1(c).

2 Vertex sets of pseudo-triangles and reflex chains

In this section, we prove a tight bound on the minimum weight convex Steiner partition for a vertex set
of a pseudo-triangle. The corners partition the pseudo-triangle into threereflex chains(some of which
may consist of a single segment). Each reflex chain is a polygonal path of reflex internal angles and total
turning angle of at mostπ. If all three reflex chains of a pseudo-triangleP are straight line segments then
P is a triangle; if two reflex chains are straight line segmentsthenP is aone-chain pseudo-triangle; see
Figure 1(a).

Theorem 1

(i) For every setS of n points lying along a pseudo-triangle, a convex Steiner partition of weight
O(W log log n) with n + O(

√
n) Steiner points can be computed inO(n) time.
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(ii) For everyn, there is a setS of n points along a pseudo-triangle such that any convex Steinerpartition
for S has weightΩ(W log log n).

Upper bound. We construct a convex Steiner partition forS by augmenting the vertex setS with new
(Steiner) vertices and new edges as follows. Refer to Figure1(c). Add the 3 edges of the convex hull
conv(S) of S to the network. Each edge has weight at mostW , hence their total weight isO(W ). Since
the three polygons between the convex hull of the pseudo-triangle and the three reflex chains are convex, it
suffices to partition the interior of the pseudo-triangle. First we reduce the problem to one-chain pseudo-
triangles. Note that the weight of a reflex chain ofP is less than twice the diameter ofP , hence|P | =
O(W ).

Lemma 1 The interior of every pseudo-triangleP with n vertices can be partitioned into three one-chain
pseudo-triangles and a (possibly degenerate) triangle along three line segments of total weightO(|P |).

Proof. The bisector of an interior angle ofP at a corner separates the two adjacent reflex chains ofP .
The bisectors of the three corners bound a (possibly degenerate) triangle∆ lying in the interior ofP ; see
Figure 1(c). Consider the line segment along each bisector between a corner and its intersections with the
other two bisectors. These segments jointly partition the interior ofP into three one-chain pseudo-triangles
(each adjacent to a reflex chain ofP ) and∆. Each segment is shorter than a diagonal ofP , hence its weight
is at most|P |/2. The total weight of the three segments isO(|P |). 2

Lemma 2 The width of a convex chainγ of turning angleα, 0 < α ≤ π
2 , is at mostα4 |γ|.

Proof. Draw a circle in whichab is a chord of inscribed angleπ − α. Note thatγ must lie in the circular
disk cap bounded by the chordab, otherwise its turning angle is more thanα. The width of this cap is
(|ab|/2) sin(α/2) < α|γ|/4, hence this is also an upper bound on the width ofγ. 2

λ0

b

a

c

λ1

λ2

λ3

B1

B2

B3

(a) (c)(b)

α

w

a

b

γ

h(γ)

λi

c

c

a

b

Ai

Figure 2:(a) The a reflex chain of widthw and turning angleα. (b) A one-chain pseudo-triangle with cornersa, b,
andc, and with reflex chainsλ0, λ1, λ2, andλ3. (c) In stepi, we choose a vertex setAi, halfplanesh(γ) for γ ∈ Γi.

Lemma 3 The interior of every one-chain pseudo-triangleP with n vertices has a convex Steiner partition
of weight at mostO(|P | log log n) with at mostn+O(

√
n) Steiner points. Such a partition can be computed

in O(n) time.
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Proof. Denote the corners of a one-chain pseudo-triangleP by a, b, andc such that the reflex chainλ0

betweena and b hasn − 3 internal vertices, and the other two reflex chains are the line segmentsac
andbc; see Figure 2(b). We partition the interiorint(P) of P by pairwise non-crossing reflex chainsλi,
i = 1, 2, . . . , t = O(log log n). Each reflex chain connects segmentsac andbc, andλi lies in the interior of
the one-chain pseudo-triangle bounded byλi−1, ac, andbc. It is clear that the weight of each reflex chain is
at most|ac|+ |bc|. The last reflex chain,λt, will be a single segment, and so the portion ofint(P) bounded
by λt, ac, andbc is a triangle. Once these polygonal chains are constructed,we still need to subdivide the
facesBi ⊂ int(P) between consecutive reflex chains,λi−1 andλi, into convex faces. Note that the vertices
of λi areconvexvertices ofBi, and the internal vertices ofλi−1 arereflexvertices ofBi. PartitionBi by
rays emanating from each reflex vertex ofBi and subdividing the reflex angles into convex angles. We will
choose the chainsλi and the rays that partitionBi such that the portion of the rays lying inBi have total
weight proportional to the weight ofλi for everyi = 1, 2, . . . t.

We define the reflex chainsλi, i = 0, 1, . . . , t, inductively.λ0 is the given reflex chain of the one-chain
pseudo-triangleP . Assume thatλi is given, and we need to constructλi+1. We will partitionλi into a set
Γi of subchains ordered alongλi such that the width of each subchainγ ⊂ λi, whereγ ∈ Γi, is at most the
average weight of the segments inγ. For everyi, let mi denote the number of internal vertices ofλi, and
let αi < π denote its turning angle.

Initially, we havei = 0; λ0 is the reflex chain ofP , andm0 = n − 3. As long asmi > 0, construct the
chainλi+1 as follows. We choose a subsetAi of vertices ofλi, and partitionλi into a setΓi of subchains,
each lying between consecutive vertices inAi. Choose the splitting pointsAi by the following simple
algorithm: Put the endpointλi ∩ bc of λi into Ai. Traverseλi from λi ∩ bc to λi ∩ ac. Denoting byγv ⊂ λi

the subchain between the previous vertex ofAi and a vertexv ∈ λi, put v into Ai if γv is the maximal
subchain with at most⌊√mi⌋ segments and turning angle of at mostαi/

√
mi. Finally, put the endpoint

λi ∩ac into Ai (this process is schematically shown in Figure 2(c)). The number of subchains ofλi created
in this way is|Γi| ≤ 2

√
mi.

Let Ci be the intersection of the halfplanesh(γ) for γ ∈ Γi. Let λi+1 be the portion of the boundary of
Ci lying in P . Finally, for each vertexv of each subchainγ ∈ Γi, partitionBi by the ray emanating fromv
and perpendicular toh(γ). In particular, we draw two rays at the common endpoint of anytwo consecutive
subchains inΓi. This completes the construction of the chainλi+1 and the partition ofBi into convex faces.

The weight of each ray drawn at a vertex of a subchainγ ∈ Γi is at most the width ofγ, which is at
mostαi|γ|/(4

√
mi) ≤ π

4 |γ|/
√

mi by Lemma 2. By construction, eachγ ∈ Γi has at most
√

mi vertices.
Hence the total weight of the rays that partitionBi+1 into convex faces is

∑

γ∈Γi

(⌊√mi⌋ + 1) · π

4
· |γ|√

mi
≤ π

2
·
∑

γ∈Γi

|γ| =
π

2
|λi| ≤

π

2
|P |.

Sincemi+1 ≤ |Γi| ≤ 2
√

mi, we also havet = O(log log n). Summing over alli = 0, 1, . . . , t − 1, the
total weight of the resulting convex Steiner partition ofP is O(|P | · t) = O(|P | log log n), as required. The
number of Steiner points is upper bounded by

t
∑

i=0

(2 + mi) = 2(t + 1) +

t
∑

i=0

mi ≤ O(log log n) +

t
∑

i=0

21−1/2i · (n − 3)1/2i

= n + O(
√

n).

Each polygonal chainλi+1 is constructed in a single traversal ofλi, in O(mi) time. Between the
chainsλi andλi+1, every segment splitting a reflex angle at an internal vertexof λi hits ac, bc, or one of
two possible edges ofλi+1, so each ray can be computed inO(1) time. Hence, the total runtime of the
partitioning algorithm isO(

∑t
i=0 mi) = O(n). 2
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Lemma 4 The interior of every pseudo-triangleP with n vertices has a convex Steiner partition of weight
O(|P | log log n) with n + O(

√
n) Steiner points. Such a partition can be computed inO(n) time.

Proof. Partition the pseudo-triangleP by Lemma 1 into three one-chain pseudo-triangles and a (possibly
degenerate) small interior triangle, as in Figure 1(c). This partition has weightO(|P |) and at most 3
Steiner points. By Lemma 4, the interior of each pseudo-triangle can be partitioned into convex faces using
n + O(

√
n) Steiner points and edges of total weightO(|P | log log n) in O(n) time. 2

This completes the proof of the upper bound in part (i) of Theorem 1.

Lower bound construction with points along a reflex chain. We prove that the weight of every convex
Steiner partition for a setS of n + 4 points arranged as indicated in Figure 1(b) is at leastΩ(W log log n).
Since this construction can be tiled with 5 convex faces and 4congruent pseudo-triangles as shown in the
figure, we also obtain anΩ(W log log n) lower bound for the minimum Steiner partition ofn vertices of a
pseudo-triangle.

Consider an integern such thatlog log n is even. LetS0 be a set ofn evenly spaced points on a circle
of unit radius centered at the origino; let S be the union ofS0 and the 4 vertices of a squareQ at points
(±2,±2); see Figure 1(b). ClearlyQ = conv(S). Denoting byWn the length of an EMST forS, observe
that limn→∞ Wn = 2π + 4(2

√
2 − 1) ≈ 13.60. For sufficiently largen, an EMST consists ofn − 1 edges

of conv(S0) and 4 edges, each of length2
√

2 − 1, connecting the vertices ofQ to conv(S0).
Let G be a convex Steiner partition forS. For r > 0, denote byC(r) (resp. D(r)) the circle (resp.

disk) of radiusr centered ato. For0 < r < R, let K(r,R) = D(R) \ D(r) be the annulus between the
circlesC(R) andC(r). We construct inductively a sequence ofk = (log log n)/2 concentric circles of
radii 1 = r0 < r1 < . . . < rk ≤ 3/2 and show (in Lemma 7) that the length of the portion ofG lying in
each annulusK(ri, ri+1) is Ω(1). This immediately implies|G| = Ω(log log n).

We say that a set ofm points on a circleC is denseif every arc ofC of size (measured by the angle
of apex at the center ofC) at least4π/m contains at least one of the points. Along each circleC(ri), we
choose a dense setAi ⊂ G ∩ C(ri), which consists of some intersection points of the circleC(ri) with
vertices or edges ofG. Initially, let A0 = S0 be the a dense set ofm0 = n points ofS alongC(r0). We
next describe how we choose the radiusri and the point setAi for i = 1, 2, . . . , k.

We will choose the widthsεi = ri+1 − ri of the annuli to satisfy the following two conditions:

1. εi should be small enough so that the circleC(ri+1) intersectsG in a large dense set of points.

2. εi should be large enough so that the length of the portion ofG in K(ri, ri+1) is at leastΩ(1).

We choose the radiiri so that they satisfy the recurrenceri+1 = ri + 1/(9mi) for i = 1, 2, . . . , k. The
following lemma ensures that we find a dense set of at least

√
mi points inC(ri+1) ∩ G for every i =

0, 1, . . . , k − 1, if ri+1 < 3/2. This shows that

mi ≥ n2−i

, (1)

and we repeat the argumentk = (log log n)/2 times, wheremi ≥ 10 holds for every0 ≤ i ≤ k.

Lemma 5 For any two pointsp, q ∈ C(ri) with ∠poq ≥ 1/
√

mi, the chords of the circleC(ri+1) whose
midpoints arep andq, respectively, are disjoint.

Proof. Consider two pointsp, q ∈ C(ri) and letα = ∠poq. Recall thatri+1 = ri + 1
9mi

. If the chords of
the circleC(ri+1) with midpointsp andq, respectively, share a common endpoint, then

cos α =
ri

ri+1
=

ri

ri + 1
9mi

.
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Figure 3:A half-disk D whose boundary (black)
consists of a segments and a half-circleγ, and a
convex partitionG (grey).

Figure 4:The graphG contains a portion of length
at leastεi in each half-disk lying in the annulus
K(ri, ri+1).

From the Taylor expansion of cosine, forα ∈
(

0, π
2

]

we have

1 − α2

2
< cos α < 1 − α2

2
+

α4

4!
≤ 1 − α2

3
. (2)

Hence, the chords with midpoints atp andq are disjoint if

1 − α2

3
≤ ri

ri + 1
9mi

. (3)

The inequality holds forα = 1/
√

mi andri ≥ 1. 2

The following simple lemma is crucial for enforcing the convexity of faces in the partition.

Lemma 6 LetD be a closed half-disk of radiusr centered atp and bounded by a diameter segments and
a half-circle γ; see Figure 3. LetG be network such thatp lies at a vertex or on an edge ofG, and the
half-diskD is covered by convex faces ofG. Then the weight of the portion ofG lying in D is at leastr.

Proof. It is enough to show that every halfcircle centered atp and lying inD intersects the networkG,
since then the lower bound on the weight follows by integration. Assume to the contrary, that there is a
halfcircle γ′ centered atp lying in D but disjoint fromG. Denote the endpoints ofγ′ by q1, q2 ∈ s. The
points q1 andq2 are on opposite sides ofp and lie in the interior of some faces ofG. They must lie in
distinct faces ofG, otherwise any point in the segmentq1q2, includingp, would be in the interior of the
same face by convexity. However, they must lie in the same face ofG, since they can be connected by curve
γ′ disjoint fromG. This is a contradiction, hence every halfcircle centered at p and lying inD intersectsG.
2

We next choose a set of pointsAi ⊆ C(ri)∩G inductively for everyi = 1, 2, . . . k. PartitionC(ri) into
2⌊
√

mi/2⌋2 ≤ mi/2 congruent arcs. By the induction hypothesis,Ai is a dense set alongC(ri), and so
there is a point ofAi in each arc. LetA′

i ⊂ Ai consist of exactly one point ofAi from every⌊
√

mi/2⌋-th
arc. The cardinality ofA′

i is #A′
i = 2⌊

√

mi/2⌋ ≥
√

mi if mi ≥ 2. Draw the chords of circleC(ri+1) with
midpoints at points inA′

i. Note that each chord is tangent toC(ri). The size of an arc between consecutive
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points inA′
i is at least

2π
⌊
√

mi/2⌋ − 1

2⌊
√

mi/2⌋2
≥ 1√

mi
,

if mi > 2. By Lemma 5, these chords ofC(ri+1) are pairwise disjoint, and determine disjoint caps of
C(ri+1). Recall that we assumed that diskD(ri+1) is covered by bounded faces wheneverri+1 < 3/2. By
Lemma 6, every cap contains a point inG ∩ C(ri+1). Let Ai+1 consists of one point ofG ∩ C(ri+1) from
each cap. The cardinality ofAi+1 is mi+1 = #A′

i ≥
√

mi. Moreover, the point setAi+1 is dense, since
every arc of size least4π/mi+1 contains at least one entire cap, hence at least one point ofAi+1.

Lemma 7 The total weight of the portion ofG that lies in K(ri, ri+1) is at least1/50 for every i =
0, 1, . . . , k − 1.

Proof. Recall that the width ofK(ri, ri+1) is ri+1 − ri = 1
9mi

. PartitionC(ri) into ⌊mi/2⌋ congruent
arcs. SinceAi is dense, each arc of size4π/mi contains a point ofAi. Pick one point ofAi from every
other arc, and letA′′

i denote the resulting set of at least⌊mi/4⌋ points. Any two consecutive points inA′′
i

are separated by an arc of size at least8π/mi. For every pointp ∈ A′′
i , construct a half-disk centered atp

with radiusεi and bounded by the tangent toC(ri) atp; see Figure 4. These half-disks are pairwise disjoint
and lie in the annulusK(ri, ri+1). By Lemma 6, the weight of the portion ofG lying in each half-disk of
radiusεi is at leastεi. Hence, the length ofG ∩ K(ri, ri+1) is at least

#A′′
i · εi ≥

⌊mi

4

⌋

· 1

9mi
≥ 1

50
.

2

A standard calculation using (1) gives thatmk ≥ log n holds for sufficiently largen. Note also that we
assumed in Lemma 7 that each annulusK(ri, ri+1) is covered by bounded (convex) faces ofG. Since the
sequence ofmi’s is non-decreasing, we have

k−1
∑

i=0

εi ≤
k

9 log n
≤ 1

2
, therefore rk = 1 +

k−1
∑

i=0

εi ≤
3

2
.

The disk of radius3/2 centered at the origin lies inQ. Since the annuliK(ri, ri+1), for 0 ≤ i ≤ k−1, have
pairwise disjoint interiors, and each annulus is covered bybounded faces ofG, we can apply Lemma 7, and
the total weight ofG is at leastk/50 = Ω(W log log n). This completes the proof of part (ii) of Theorem 1.

3 General point sets in the plane

In this section we derive asymptotically tight bounds on theminimum length of a convex Steiner partition
for n points in the plane.

Theorem 2

(i) For n points in the plane, there is a convex Steiner partition withO(W log n/ log log n) weight and
O(n) Steiner points. Such a partition can be computed inO(n log n) time.

(ii) For everyn, there is a setS of n points in the plane such that any convex Steiner partition for S has
weightΩ(W log n/ log log n).
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We also extend the lower bound construction and show that there aren-element point sets for which any
spanner network with all bounded faces convex and stretch factor o(n) has weightΩ(W log n/ log log n).

Theorem 3 For everyn, there is ann-element point setS in the plane such that any spanner network forS,
whose bounded faces are convex and whose stretch factor iso(n), must have weightΩ(W log n/ log log n).

Our upper bound in Theorem 2 is based on first partitioning theconvex hull of ann-element point
set into polygons, and then partitioning the polygons into convex faces. A convex Steiner partition of a
polygonP is a planar straight line graphG, where the boundary of every bounded face ofG is convex and
all edges ofP are covered by edges ofG (in particular, there is no constraint on the unbounded faceof G).
For convex Steiner partitions of polygons, we prove the following.

Theorem 4 Every polygonP with n vertices,m of which are reflex, admits a convex Steiner partition with
O(|P | log m/ log log m) weight andO(n) Steiner points. Such a partition can be computed inO(n log n)
time.

The upper bound for the weight is the best possible, as it was shown by Levcopoulos and Lingas [30].
Interestingly, in our lower bound construction in Theorem 2, the EMST is a path which can be completed
to a simple polygon by adding one edge. The resulting simple polygonP is, in fact, somewhat reminiscent
of the lower bound construction presented in [30].

3.1 Lower bound construction

Proof of Theorem 2(ii). For everyn > 4, we describe a set of at mostn points in the plane for which any
convex Steiner partition has weightΩ(W log n/ log log n). Refer to Figure 5. Letk ∈ N be the maximal
integer such thatkk < n. Sincen > 4, we havek ≥ 2 andk = Θ(log n/ log log n). Consider a circular
arc subtended by an inscribed angleα = π/(4k); that is, the central angle is2α = π/(2k). Let β be a
polygonal path connectingk + 1 points evenly distributed along this arc. We construct inductively, in k
steps, a polygonal pathγk, whose vertex set will be the point setS. The initial polygonal path is a straight
line segmentγ0 = ab. In stepi = 1, 2, . . . , k, construct a polygonal pathγi by replacing each segments of
γi−1 by a scaled copy of the polygonal pathβ above segments, as illustrated in Figure 5. The polygonal
pathγi consists ofki segments of equal length. LetSi denote the set of vertices ofγi, for i = 0, 1, . . . , k.
Sinceγi is a refinement ofγi−1, we haveSi−1 ⊂ Si. By induction, we have#Si = ki + 1. Our point set
for the lower bound construction isS = Sk. Observe that by the definition ofk, #S = #Sk ≤ n.

Every edge ofγi makes an angle of at mostiα with the x-axis. So every edge of the final curveγk

makes an angle at mostkα ≤ π/4 with thex-axis. Hence, an EMST ofSi is the pathγi for eachi (e.g., by
Prim’s algorithm). We give an upper bound on the weight ofγk. In each step, the increase in length of the
path is bounded by a constant factor:

|γi|
|γi−1|

<
2α

2 sin α
≤ α

α − α3/6
<

1

1 − α/6
=

24k

24k − π
= 1 +

π

24k − π
< 1 +

1

k
,

for k ≥ 2. The weight ofγk is |γk| ≤ |γ0| · (1 + 1/k)k < |ab| · e = O(|ab|), wheree stands for the base of
the natural logarithm.

Next, we show that the weight of any convex Steiner partitionof S isΩ(|γk|·k) = Ω(W log n/ log log n).
By Lemma 6, it is enough to construct a set of pairwise disjoint half-disks of total radiiΩ(|ab| · k) such
that each half-disk is centered at a point ofS and is contained in the convex hull ofS. Specifically, we
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construct disjoint half-disks of radius|ab|/(32ki) centered at at least half of the points inSi \ Si−1, for
i = 1, 2, . . . , k − 1 (but not for the last level,i = k). So the total radii of these disks will be

k−1
∑

i=1

#(Si \ Si−1)

2
· |ab|
32ki

=
|ab|
64

k−1
∑

i=1

ki − ki−1

ki
= Ω(|ab| · k) = Ω

(

W log n

log log n

)

.

The length of each segment of the pathγi is at least|ab|/ki because in each step, we replace a segment by
a sequence ofk segments of larger total length. If the diameter of the polygonal pathβ is ℓ, then its width
is

1 − cos α

2 sin α
· ℓ =

2 sin2 α
2

4 sin α
2 cos α

2

· ℓ = tan
α

2
· ℓ

2
≥ α

4
· ℓ =

π

16k
· ℓ ≥ ℓ

8k
.

Since the vertices of a scaled copy of the pathβ ⊂ γi lie along a circular arc, at leastk/2 of its k − 1
internal vertices lie at a distance at leastℓ/(16k) from the diameter ofβ (that is, at least half-width distance
from the chord of the circular arc). For each copy of the pathβ along the pathsγi for i = 1, 2, . . . , k − 1
(except for the last level,i = k), at each such vertexv ∈ β, v ∈ Si \ Si−1, place a half-disk of radius
|ab|/(32ki) ≤ ℓ/(32k) centered atv and bounded by the tangent line of the circular arc atv. For a fixedi,
let Di denote this set of congruent half-disks.

a b

width

Figure 5:Lower bound construction fork = 2 : S = S3. Each segment is replaced with a sequence of 4 segments.
We place half-disks of radius|ab|/(32ki) centered at at least half of the points inSi \ Si−1, for i = 1, 2, . . . , k − 1.

It remains to show that any half-disk in∪k−1
i=1 Di lies in the convex hull ofS, and that the half-disks in

∪k−1
i=1 Di are pairwise disjoint. Note that the half-disks inDi do not lie entirely belowγi, and soγi does

not separate half-disks inDi andDi+1. We show that the half-disks inDi (i) are pairwise disjoint; (ii) lie
above curveγi−1, at distance at least|ab|/(32ki) from γi−1; (iii) lie below γi+1 and their portions aboveγi

remains within distance at most|ab|/(64ki+2) from γi. (i) It is easy to see that the half-disks inDi, centered
at vertices ofγi, are pairwise disjoint: The half-disks inDi have radius|ab|/(32ki). Consecutive vertices of
γi in the same copy ofβ are at least|ab|/ki distance apart, and so thex-coordinates of any two vertices ofγi

(even in different copies ofβ) are at leastcos(π/4)|ab|/ki distance apart. (ii) By construction, the centers of
the half-disks inDi are aboveγi−1, at distance at least|ab|/(16ki) from γi−1. Hence every half disk inDi

is aboveγi−1, at distance at least|ab|/(32ki) from γi−1. (iii) Consider a circle passing through the vertices
of a copy ofβ alongγi. Each edge ofβ subtends an inscribed angle ofα/k = π/(4k2); and the diameter
of a half-disk centered at a vertex ofβ is tangent to this circle. Hence, at the center of each half-disk in
Di, the incident edges ofγi make an angle ofπ/(4k2) with the diameter of the half-disk. The portions of
the half-disk aboveγi remain within distance at mostsin(π/(4k2)) · |ab|/(32ki) ≤ |ab|/(64ki+2) from
γi. Therefore the half-disks inDi lie below γi+1, yet they are disjoint from any half-disk inDi+1. This
completes the proof of Theorem 2(ii). 2

Proof of Theorem 3. We modify the previous construction as follows. LetS be a set of at most2n points:
a setS1 of n points distributed evenly on a circle of radius 2 centered atthe origino, and a setS2 of at most
n points making our construction in Figure 5, starting from a horizontal segmentγ0 = ab centered ato,
where|ab| = 2. In particular,S2 is contained in a circle of unit radius centered ato.
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An EMST of S consists of a polygonal path ofn − 1 edges connecting consecutive points along the
circle of radius 2, a polygonal path ofn − 1 edges connecting consecutive points alongγk, and a unit
segment connecting the two. Denoting byWn the length of an EMST forS, we havelimn→∞ Wn ≤
2e + 4π + 1 = O(1). Consider a spanner networkG for S with stretch factoro(n) and allboundedfaces
convex. By the condition on the stretch factor, the shortestpath between any two consecutive vertices of
conv(S) has lengtho(n) · 4π/n = o(1). Hence the unbounded face is disjoint from the unit disk ifn is
sufficiently large. That is, all faces of the network that cover the unit disk are convex, and our previous
argument shows that the network has weightΩ(log n/ log log n) = Ω(W log n/ log log n), as claimed. 2

Remark. Consider again the point setS for the lower bound construction in Figure 5. LetP be the
simple polygon obtained by connecting the two endpointsa and b of γk. Note thatP is x-monotone,
and |P | ≤ 2W . We have given a lower bound on the total weight of the portions of a convex Steiner
partition of S that lie in some pairwise disjoint half-disks. Observe thatthese half-disks are disjoint
from the edges ofP and lie in the interior ofP . It follows that any Steiner partition ofP has weight
Ω(|P | log n/ log log n). In our construction, the convex vertices ofP area, b, and the verticesSk \ Sk−1

introduced in the last level. The number of reflex vertices ism = Θ(n/k) = Θ(n log log n/ log n), and
so log m/ log log m = Θ(log n/ log log n). This provides an alternative construction for the lower bound
of Ω(|P | log m/ log log m) on the minimum weight Steiner partition of a simple polygonP with m reflex
vertices, first established by Levcopoulos and Lingas [30].

3.2 Upper bound—reduction to flat poygons

Let S be a set ofn points in the plane. We show thatS admits a convex Steiner partition of weight
O(W log n/ log log n) by reducing the partition problem for points to the corresponding partition problem
for polygons. We proceed as follows. Compute the convex hulland an EMST ofS. The EMST partitions
the interior of the convex hull into weakly simple polygons [33, Section 10.2]. The total perimeter of these
polygons is at most4W . Since the maximum degree of an EMST is at most 6, the total number of vertices
of these polygons is at most6n. We construct a convex Steiner partition for each of these polygons, and
then Theorem 4 completes the proof of Theorem 2(i).

We now present the proof of Theorem 4. Given a simple polygonP with n vertices,m of which are
reflex, we construct a convex Steiner partition ofP in three stages. The first stage (Lemma 8) partitions the
interior of P into convex polygons andmonotone polygons(defined below) by introducing new edges of
total weightO(|P |). The second stage (Lemma 10) partitions the interior of eachx-monotone polygonM
into convex polygons and monotone1-flat polygons(defined below) introducing new edges of total weight
O(|M |). The third stage (Lemma 11) partitions every monotone 1-flatpolygonF into convex faces by
adding new edges of total weightO(|F | log m/ log log m). We proceed with the details.

(a) (b)

s

P

γ
a

b

p

q

P

D(P, s)

s

Figure 6:(a) A 1-flat polygonP . (b) A polygonP and a domainD(P, s) spanned by a sides of P .
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Definitions. A diagonalof a polygonP is a line segment connecting two vertices ofP through the interior
of P . A chordof a polygonP is a line segment that connects two points on the boundary ofP (at vertices
or on edges ofP ) and whose relative interior is disjoint from the exterior of P . For a parameterε > 0, a
polygonP is ε-flat if it is bounded by abasesides and a polygonal curveγ connecting the endpoints ofs,
and lying in one of the closed halfplanes determined bys, such that for any chordab of P with a, b ∈ γ,
the portion ofγ betweena andb has weight at most(1 + ε)|ab|; see Figure 6 (i). In particular, we have
|γ| ≤ (1 + ε)|s|.

Letd be adirection, represented by a directed or undirected line or line segment (e.g., a coordinate axis).
A polygonal pathγ is d-monotoneif the intersection ofγ with every line orthogonal tod is connected (that
is, the intersection is a point, a line segment, or the empty set). A polygonP is d-monotoneif it is bounded
by a base sides parallel tod and ad-monotone pathγ connecting the endpoints ofs. We sometimes
omit the directiond, and call a polygonmonotoneif it is d-monotone in some directiond. (Note that our
definition of monotone polygon is slightly different from the standard one [1]).

Denote byP the closed polygonal domain bounded byP ; that is,P is the closure ofint(P). For a
polygonP and a sides, let D(P, s) be the set of all pointsp ∈ P such that the line segmentpq lies in P ,
q ∈ s andpq is orthogonal tos; refer to Fig. 6(ii). Let the polygonM(P, s) be the boundary of the domain
D(P, s). Note thatM(P, s) is s-monotone.

Lemma 8 Every polygonP with n vertices admits a partition into convex faces and monotone polygons,
such that the partition hasO(|P |) weight,O(n) Steiner points, and can be computed inO(n log n) time.
Furthermore, every reflex vertex of a monotone face is a reflexvertex ofP .

Proof. We partitionP recursively. The input of each recursive step is a pair(Q, s), whereQ is a simple
polygon ands is a side ofQ. For a polygonQ, let v(Q) denote the number of vertices ofQ. Initially, we
start with the pair(P, s0), wheres0 is an arbitrary side ofP , andv(P ) = n.

One recursion step works as follows (refer to Figure 7): We are given a pair(Q, s). Stop if Q is
s-monotone or convex. Otherwise compute thes-monotone polygonM(Q, s) spanned bys in Q. The
edges ofM(Q, s) partitionQ into polygonal faces. Denote the resulting polygons outside of M(Q, s) by
Q1, Q2, . . . , Qt, for somet ≥ 1. The polygonM(Q, s) has exactly one side adjacent to eachQi, which we
denote bysi. We havev(Qi) ≤ v(Q) for i = 1, 2, . . . , t.

Case 1 If [t = 1 andv(Q1) < v(Q)] or [t ≥ 2], then partitionQ along all segmentssi and recurse on
(Qi, si) for i = 1, . . . , t.

Case 2 Ift = 1 andv(Q1) = v(Q), then find a chordf of Q1 parallel tos1 such thatf 6⊆ s1, the endpoints
of f lie on the edges ofQ1 adjacent tos1, andf contains a vertex ofQ1; see Figure 7(c). PartitionQ
alongf into a convex quadrilateralQ0 adjacent tos; and polygonsQ′

1, Q
′
2, . . . , Q

′
t′ , for somet′ ≥ 1.

EachQ′
i has exactly one sides′i alongf . Recurse on(Q′

i, s
′
i) for i = 1, . . . , t′.

First, we estimate the weight of the partition. Consider onestep of the recursion. In Case 1,Q is parti-
tioned along the sides ofM(Q, s) perpendicular tos, and the monotone polygonM(Q, s) is discarded from
further consideration. The partitioning edgessi, i = 1, 2, . . . , t, become the base sides in the subproblems
(Qi, si). Charge the weight of eachsi to the common boundary ofM(Qi, si) and the input polygonP .
The weight of this portion of the boundary ofM(Qi, si) is at leastsi, and will not be charged again—since
M(Qi, si) is discarded in the next step of the recursion. In Case 2,Q is partitioned along a chordf perpen-
dicular tos, and a convex quadrilateralQ0, which is strictly larger thanM(Q, s), is discarded from further
consideration. The edgess′i, i = 1, 2, . . . , t′, alongf become the base sides of the subproblems. Charge
the weight of eachs′i to the common boundary ofM(Q′

i, s
′
i) and the input polygonP as above. Over all,
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each portion of the boundary ofP is charged at most once. Hence the total weight of the new edges is at
most|P |, and the weight of the entire network (includingP ) is at most2|P |.

s s

s1

s2

s3

Q
Q1

Q2 Q3

M(Q, s)

s1

Q′

2

Q2

s2

s1

Q1

Q1

s1 Q1

Q1

Q1

s1

(a) (b)

(c) (d)

(e) (f)

Q′

1

s′
2s′

1

f Q′

1

s1

Q2Q1

Q1 Q1

Q2

s1

s1 s′
1

f

s1

s2

Figure 7:Partitioning a polygonP into convex and monotone polygons.

Next, we estimate the number of Steiner points. For a polygonQ, let count(Q) = 2v(Q)−6. Consider
a step of the recursion that producest ≥ 1 subproblems(Qi, si), i = 1, 2, . . . , t. In Case 1, at mostt new
Steiner points are created (at most one endpoint of eachsi). In Case 2, at most 2 Steiner points are created
(namely, the endpoints of the chordf ). So in both cases, at most2t Steiner points are created. We claim
that

t
∑

i=1

count(Qi) ≤ count(Q) − t.

That is, the total count decreases by at leastt. Initially, count(P ) = 2n−6. We havecount(Q) ≥ 2·3−6 =
0 for any subproblem(Q, s) throughout the recursion. This gives an upper bound of2(2n − 6) = 4n − 12
on the number of new Steiner points created altogether.

We now justify the above claim. For a subproblem(Q, s), let V (Q, s) denote the set of vertices ofQ
with the exception of the endpoints ofs. Clearly,#V (Q, s) = v(Q) − 2. As above, consider a step of
the recursion that produces subproblems(Qi, si), i = 1, 2, . . . , t. The setsV (Qi, si) are pairwise disjoint
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and
⋃t

i=1 V (Qi, si) ⊆ V (Q, s). Therefore,
∑t

i=1(v(Qi) − 2) ≤ v(Q) − 2, and
∑t

i=1 count(Qi) ≤
count(Q)−2(t−1). Fort ≥ 2, we havet ≤ 2(t−1), so our claim is established in this case. Now assume
thatt = 1 (i.e., a single subproblem(Q1, s1) is produced). In Case 1, we assumed thatv(Q1) < v(Q). In
Case 2, a vertex ofQ incident to the chordf belongs toV (Q, s) but lies at the base side of the subproblem,
hencev(Q1) < v(Q). This implies that fort = 1, we also havecount(Q1) ≤ count(Q)− 2 in both cases.

It is easy to implement the algorithm inO(n log n) time. Assume w.l.o.g. thats0 is horizontal. Then
every partitioning segment is axis-parallel, and is incident to a vertex ofP or a Steiner point. Using a
ray-shooting data structure for the polygonP [8], compute all axis-aligned rays from every vertex ofP in
advance; and sort the heads of rays along each edge ofP . During the partition algorithm, we insert new
rays from every new Steiner point. Shoot a ray from the endpoints ofsi orthogonally tosi into the interior
of Qi (in Case 1) and from the endpoints off orthogonally tof in the interior ofQ′

i (in Case 2). The rays
allow computing each polygonM(Q, s) in time proportional to its number of vertices. The sorted list of
ray heads along the edges allows finding the segmentf incident to a vertex ofP . 2

Consider now ax-monotone polygonP with a horizontal bases. Let C denote the set of all chords of
P whose endpoints are not in the interior ofs; and letH ⊂ C denote the set of horizontal chords. For every
ab ∈ C, let µ(ab) denote the portion of the boundary ofP betweena andb that does not contains.

Lemma 9 Let P be ax-monotone polygon with a horizontal bases. If there is a constantκ > 0 such
that |µ(ab)| ≤ (1 + κ)|ab| for all horizontal chordsab ∈ H, then|µ(ab)| ≤ (1 + κ)

√
2|ab| for all chords

ab ∈ C.

a

b

s

P

c d

π(ab)

µ(ab)

Figure 8:A chordab in a monotone polygonP with a horizontal bases, the boundary pathµ(ab) (bold), and the
x-monotone pathπ(ab) (dashed).

Proof. Let ab ∈ C be a chord ofP ; see Figure 8. Assume thatab is not horizontal, otherwiseµ(ab) ≤
(1 + κ)|ab|. Assume without loss of generality thata has smallery-coordinate thanb. Let π(ab) be
an x-monotone path betweena and b such that every segment alongπ(ab) is either horizontal or lies
along an edge ofP . Since the weight ofπ(ab) is at most that of an axis-aligned staircase path between
a and b, we have|π(ab)| ≤

√
2|ab|. For each horizontal portion ofπ(ab), say, cd ⊂ π(ab), we have

µ(cd) ≤ (1 + κ)|cd|. Hence|µ(ab)| ≤ (1 + κ)|π(ab)| ≤ (1 + κ)
√

2|ab|. 2

Lemma 10 Everyx-monotone polygonP with a horizontal bases andn vertices admits a Steiner partition
into convex polygons and 1-flatx-monotone faces such that the partition hasO(|P |) weight,O(n) Steiner
points, and it can be computed inO(n log n) time. Furthermore, every reflex vertex of a face is a reflex
vertex ofP .

Proof. We sweep a horizontal lineℓ top-down overP , and insert horizontal chords alongℓ when certain
events occur. LetQ denote the polygonal face in the current partition adjacentto the bases. Initially, let
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Figure 9:Partitioning anx-monotone polygon with horizontal bases into convex faces and 1-flatx-monotone faces.

Q = P . The faceQ is always anx-monotone polygon with bases, and each insertion of a horizontal chord
alongℓ cuts off a polygon fromQ. The algorithm is designed so that each polygon cut off fromQ is either
convex or 1-flat with a horizontal base along the current position of ℓ. For every chordab ∈ H lying along
the sweep-lineℓ, we defineµQ(ab) to be the portion of the boundary ofQ betweena andb that does not
contains.

Sweep a horizontal lineℓ from the top vertex down untilℓ reaches the bases. If any of the following
two events occurs for a chordab ∈ H lying alongℓ, partitionQ alongab into two faces, and letQ be the
face belowab.

Event 1. µQ(uv) contains at least three vertices ofQ in its interior and|µQ(ab)| =
√

2|ab|.
Event 2. a or b is a reflex vertex ofQ and |µQ(ab)| ≥

√
2|ab|.

In each step, we inserted a chordab and partitionedQ along chordsab into two faces. The face above
ab is either convex and its common boundary with the new faceQ is at least

√
2-times heavier than|ab|;

or it is 1-flat andx-monotone with baseab by Lemma 9, withκ =
√

2 − 1. This face is discarded from
further consideration, and the remaining face (adjacent tos) is partitioned recursively. In each step, we
discard a portion of weight at least

√
2|ab| from the boundary ofQ, and introduce a new boundary segment

of weight |ab|. If we charge the weight of each chordab uniformly to the portion of the polygonP that it
replaces, then each point along the boundary ofP is charged at most

∑∞
i=1(

√
2)−i = 1√

2−1
times. So the

total length of the partition (including the weight ofP ) is at most(1 + 1√
2−1

)|P | = O(|P |).
Next, we estimate the number of Steiner points. Letcount(Q) denote the number of vertices ofQ plus

the number of vertices ofQ with an acute interior angle. Initially, whenQ = P , we havecount(Q) ≤ 2n,
since there are no more thann acute angles. We claim that every partition step decreasescount(Q) by at
least one, and introduces at most two Steiner points. This implies that the number of new (Steiner) vertices
cannot exceed4n. In Event 2, at least three vertices are removed fromQ, and at most two new (Steiner)
vertices are created, neither of which may have an acute interior angle. In Event 1, one or two convex
vertices are removed and at most one new (Steiner) vertex is created, which does not have acute interior
angle. If only one vertex is removed fromQ, then the part ofQ aboveab is a triangle, andµQ(ab) ≥ |ab|
is possible only if the triangle has an acute angle at the vertex opposite toab. This confirms our claim that
count(Q) strictly decreases in each step, and concludes the proof of the lemma. 2
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3.3 Upper bound—partitioning a flat polygon

In this section, we partition a monotone 1-flat polygon recursively. The intermediate polygons in the recur-
sion steps are not necessarily monotone or flat, however, they have a very special structure: A polygonP
is aclamp polygonwith spineab if it is bounded by a convex chain (path)σ and ad-monotone polygonal
pathγ (for some directiond), with both paths connecting the same two pointsa andb; see Figure 10. The
width of the clamp polygon is the width of the minimum strip that contains the polygon and is parallel to
ab. Observe that everys-monotone polygon is a clamp polygon, where the convex chainis the sides.

a

P

w
γ

b

d

σ

Figure 10:A clamp polygonP , bounded by a convex chainσ (in bold) and ad-monotone polygonal pathγ.

Lemma 11 Every 1-flatx-monotone polygonF with a horizontal base andn vertices,m of which are
reflex, admits a convex Steiner partition withO(|F | log m/ log log m) weight andO(m) Steiner points.
Such a partition can be computed inO(n + m log n) time.

Proof. Consider a 1-flatx-monotone polygonF bounded by a horizontal sides0 and anx-monotone polyg-
onal pathγ0. Assume thatF hasn vertices,m of which are reflex. We partitionF recursively. We describe
a generic step of the recursion, where we are given a clamp polygonQ with r reflex vertices, bounded by a
convex chain and anx-monotone polygonal pathγ ⊆ γ0, and we want to partitionQ into convex faces and
some clamp polygonsQi, each having at mostr/2 reflex vertices. We say that theweight of the problem
associated withQ is |γ|. The polygonal pathγ of Q will be partitioned among the subproblemsQi; and so
the total weight of the subproblems in each level of the recursion is at most|γ0|. In a recursion step, we will
introduce new edges of total weightO(|γ0|). Intuitively, it is enough to show that the “average depth” of
the recursion isO(log m/ log log m), in order to establish aO(W log m/ log log m) bound on the weight
of the partition.

One step of the recursion. We are given a clamp polygonQ with r ≥ 1 reflex vertices, a spines, where
Q is bounded by a convex chainσ and a polygonal pathγ ⊆ γ0. By rotatingQ, if necessary, we may
assume that the spines is horizontal, andγ is d-monotone for some directiond (which is not necessarily
horizontal). It is clear that any vertex ofQ with maximaly-coordinate is a vertex ofγ. We also assume
that one of the vertices ofQ with minimal y-coordinate is a vertex ofγ. This property holds for the initial
clamp polygonF , and we maintain the property for every clamp polygonQ during the recursion. It follows
that |γ| ≥ 2w, wherew is the width ofQ. Let k = ⌈|γ|/w⌉ ≥ 2. We partition the polygonal pathγ into at
leastk subpaths such that

(i) each subpath passes through at mostr/k reflex vertices ofQ;

(ii) each subpath passing through a reflex vertex ofQ has weight at most|γ|/k; and

(iii) a furthest point ofγ from the supporting line of the spine ofQ is the endpoint of a subpath.
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The partition is done by successively selecting the elements of a setA ⊂ γ of spliting points. Refer to
Figure 11. The splitting points are selected as follows: Place one endpoint ofγ in A. Move a pointp along
γ continuously from this endpoint to the other. If the subpathof γ between the previous splitting point
of A andp ∈ γ satisfies any of the following conditions, then insertp into A: (1) p is the(⌊r/k⌋ + 1)th

reflex vertex ofγ along the subpath; (2) the weight of the subpath is at least|γ|/k and it passes through at
least one reflex vertex; (3) the weight of the subpath exceeds|γ|/k andp is its first reflex vertex; (4)p is a
the furthest point ofγ from the supporting line of the spine ofQ, which may be either above or below the
spine; or (5)p is the right endpoint ofγ. The cardinality ofA is at most2k + 1, with the two endpoints of
γ, at mostk − 1 additional splitting points of type (1), at mostk − 1 additional splitting points of types (2)
and (3), and the furthest point from the spine (4).

Next we partition the interior ofQ into a setF of at leastk polygons by using the pointsA ⊂ γ and by
drawing some new segments. Ifγ is x-monotone then drop a vertical segment from each pointa ∈ A to the
convex chainσ. If γ is notx-monotone, however, additional splitting points may be necessary. Letγ∗ be
the lower envelopeof γ (that is, the set of pointsp ∈ γ such that there is no other point ofγ with the same
x-coordinate and a smallery-coordinate). Ifγ is x-monotone, thenγ = γ∗, otherwiseγ∗ ⊂ γ consists of
several components. Ifpq is a vertical segment that connects distinct components ofγ∗, then the portion of
γ betweenp andq is called apocket ofγ bounded bypq. For every pointa ∈ γ in a pocket bounded bypq,
there is a line segment orthogonal tod that connectsa to pq, sinceγ is d-monotone. Now, connect every
splitting pointa ∈ A to the convex chainσ as follows. Ifa ∈ γ∗, then drop a vertical segment froma to the
convex chainσ. If a is part of a pocket bounded by some vertical segmentpq, then insertp andq as new
splitting points, extend the vertical segmentpq to σ, and connecta to pq by a segment orthogonal tod. Let
A′ denote the union ofA and the sets{p, q} for eacha ∈ A lying in a pocket bounded bypq.

There are at most2k+1 splitting points inA. Each vertical edge betweenγ and the convex chainσ has
weight at mostw. The segments orthogonal tod have weight at most2w sinceF is 1-flat and the weight
of a pocket bounded bypq is at most2|pq|, where|pq| ≤ w. So the total weight of the partition edges is at
most

(2k + 1)(1 + 2)w = (6k + 3)w ≤ 8kw = 8

⌈ |γ|
w

⌉

w < 8
|γ| + w

w
w ≤ 12|γ|.

Q

w

γ γ′

d

p

q

σ

s

a

ℓ(β)

s(β)
β

Figure 11:One level of partitions for a clamp polygonQ.

The splitting points inA′ partition the pathγ into a setΓ of subpaths, satisfying conditions (i)–(iii). By
connecting consecutive points ofA′ alongγ, we obtain a polygonal pathγ′ (dashed path in Figure 11).

So far, we have partitionedQ into a setF of polygons, each of which is bounded by a convex chain
and a path inΓ. For each pathβ ∈ Γ, let s(β) ⊂ γ′ denote the segment connecting the endpoints ofβ.
Shift segments(β) continuously to a positionℓ(β) such that it partitions the corresponding face inF into
a convex face and a clamp polygon with spines(β); see Figure 11. Since|ℓ(β)| ≤ |s(β)|, the total weight
of the segmentsℓ(β), for all β ∈ Γ, is |γ′| ≤ |γ|. The total weight of all new edges introduced in one
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recursion step is at most12|γ| + |γ| = 13|γ|. Partition all non-convex clamp polygons recursively until all
faces are convex. This completes the description of our partition algorithm.

Analysis. AssumeF is the initial 1-flat clamp polygon withn vertices,m of which are reflex, a bases0

and a polygonal pathγ0. (We can assumem is large enough, when needed.) Obviously, we have|γ0| ≤ |F |.
At level j of the recursion,j ≥ 0, we construct a polygonal pathλj connecting the two endpoints of the
spines0 as follows. At the root level,λ0 is a straight line segmentλ0 = s0. At level j, we constructλj by
replacing some segments ofλj−1 with polygonal paths: If a segments ⊂ λj−1 is the spine of a subproblem
with at least one reflex vertex, thens is replaced by the polygonal pathγ′ (defined previously); if a segment
s ⊂ λj−1 is the spine of a convex clamp polygon in a subproblem, thens is replaced by the (convex) chain
γ of that clamp polygon. We can establish a piecewise linear homeomorphismHj : λj−1 → λj. If a
segments ⊆ λj−1 is replaced by a polygonal pathγ′ ⊆ λj of weight |γ′|, thenHj mapss to γ′ while
increasing each portion ofs with the same factor. By transitivity, the compositionHj ◦Hj−1 ◦ · · · ◦H1 is a
piecewise linear homeomorphism betweens0 andλj . We next show that the weights of the approximations
λj monotonically increase (|λj−1| ≤ |λj|, for j ≥ 1) but remain in the range|s0| ≤ |λj | ≤ |γ0| ≤ 2|s0|.

Consider the recursion treeT . In T , the subproblem at a terminal node at levelj is a convexclamp
polygon, and so the corresponding portion ofλj is a portion of the initial pathγ0. At the next level,j + 1,
only the clamp polygons adjacent toλj are further partitioned. Each non-terminal nodev in T corresponds
to a subproblem, where a spinesv is replaced by a pathγ′

v andv has at leastkv ≥ 2 children (recall that
one step of the recursion partitionsγv ⊆ γ0 into at leastkv subpaths). By the definition ofkv, we have
kv ≥ |γv |/wv ≥ |sv|/wv . Observe that the pathγ′

v reaches a vertex ofγv at distance at leastwv/2 from the
spinesv, so its weight is at least

|γ′
v | ≥ 2

√

(|sv|/2)2 + (wv/2)2 =
√

|sv|2 + w2
v ≥ |sv|

√

1 + 1/k2
v .

Let nodesv(i), i = 0, 1, . . . , t, in T form a path from the root to a leaf, wherev(i) lies at leveli of the
recursion. If we follow a pathv(0), v(1), . . ., v(t) in the tree of the recursion, then the number of reflex
vertices in the subproblems decreases by a factor of at leastkv(i) for i = 0, 1, 2 . . . , t − 2. We have zero
reflex vertices at a terminal node, and we may have fewer thankv(t−1) reflex vertices at the parent of a
terminal node. At any other nodev(i) ∈ V (T ), the number of reflex vertices decreases by a factor of at
leastkv(i). Since at the root ofT corresponds to the initial problem withm reflex vertices, the product of
thekv(i) values along the path is bounded bym:

t−2
∏

i=0

kv(i) ≤ m.

In any chainv(0), v(1), . . . , v(t) from the root to a leaf inT , there are at most4 log m/ log log m nodes
with kv(i) ≥ (log m)1/4, since((log m)1/4)4 log m/ log log m = 2(log log m)(log m/ log log m) = 2log m = m.

We next establish lower bounds on the weight of the approximation pathsλj . In each step withkv ≤
(log m)1/4, a segmentsv is replaced by a pathγ′

v of weight at least|sv| ·
√

1 + 1/(log m)1/2. In each
step withk > (log m)1/4, we use the trivial lower bound that a segmentsv is replaced by a pathγ′

v of
weight at least|sv|. Let h ≥ 0 be an integer. We show that the total weight of those portionsof the initial
segments0 that undergo at leasth⌈log m/ log log m⌉ steps that each expand the weight by a factor of at
least

√

1 + 1/(log m)1/2 is at most|s0|/2h. This is immediate forh = 0; and if it did not hold forh ≥ 1,
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then the weight of the final approximation pathγ0 would be

|γ0| ≥ |s0|
2h

(

1 +
1√

log m

)
h log m

2 log log m

=
|s0|
2h

(

(

1 +
1√

log m

)

√
log m

)

h
√

log m

2 log log m

≥ |s0|
(

2

√
log m

2 log log m

)h

≥ 2h|s0| > 2|s0|,

for m ≥ 2256, using the fact that(1+1/x)x ≥ 2 for x ≥ 1. This contradicts our assumption thatF is 1-flat
and so|γ0| ≤ 2|s0|.

For anyh ≥ 4 and j = h⌈log m/ log log m⌉, we have|λj ∩ γ0| ≥ (1 − 24−h)|γ0|, that is, the
common portion ofλj andγ0 has weight at least(1 − 24−h)|γ0|. This implies that for anyh ≥ 4, at level
j = h⌈log m/ log log m⌉, we are left with subproblems of total weight at most|γ0|/2h. At each level
of the recursion, we introduce new edges whose total weight is proportional to the weight of the current
subproblems in that level. Therefore, forh ≥ 4, the total weight of the new edges introduced between levels
h⌈log m/ log log m⌉ and(h+1)⌈log m/ log log m⌉ is at most(1/2)(h−4)O(|γ0|)·⌈log m/ log log m⌉. This
also holds forh = 0, 1, 2, 3. The weight of the final convex Steiner partition ofF is bounded by

∞
∑

h=0

(

1

2

)h−4

O(|γ0|) ·
⌈

log m

log log m

⌉

= O

(

|γ0| ·
log m

log log m

)

= O

(

|F | · log m

log log m

)

.

The number of Steiner points in levelj of the recursion is proportional to the total number splitting
points created alongγj−1. Each splitting point in a setA lies at a reflex vertex or between two reflex
vertices ofγ0; and there are at most one splitting point ofA between two consecutive reflex vertices ofγ0.
Hence, there are at most2m − 1 splitting points along pathsλj for all j ≥ 0, and the number of Steiner
points isO(m).

The runtime of constructing the partition isO(n + m log n). In an O(n)-time preprocessing step,
traverseγ0 and for each convex chainβ ⊂ γ0 between consecutive reflex vertices, compute the weight
and build a binary search structure, which can report for a query valueq > 0 a pointp ∈ β in O(log n)
time such that the weight of the portion ofβ between its left endpoint andp equalsq. In order to find the
splitting points in a clamp polygonQ, we traverse the corresponding pathγ ⊆ γ0 once. We have seen
that the number of reflex vertices traversed more thanh⌈log m/ log log m⌉ times isO(m/2h), and so we
traverse reflex verticesO(m log m/ log log m) times in total. We can skip convex vertices, since we have
computed the weight ofγ0 between consecutive reflex vertices. There is at most one splitting point in A
between any two reflex vertices, each of which can be located in O(log n) time based on a binary search
structure. We spendO(m log n) total time on finding points ofA between reflex vertices. For connecting
the splitting points to the convex chainσ of the corresponding clamp polygonQ, we use a ray shooting
data structure [8] forF , which can be constructed inO(n) time and permitsO(log n) query time. Since
each segments(β) either connects the endpoints ofβ or is tangent to a reflex vertex ofβ, we can compute
s(β) in a single traversal of the reflex vertices ofβ. The total time for partitioningF is O(m log n). This
completes the proof of Lemma 11. 2

Lemma 11 was the last in the reduction chain, so the proof of Theorem 4 is now complete.
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4 Conclusion

We deduced tight bounds on the weight of a minimum convex partition of a point set in terms of their
Euclidean minimum spanning trees. The worst-case ratio of the minimum Steiner partition and an EMST
is Θ(log n/ log log n) in general, andΘ(log log n) for the special case of pseudo-triangles. We conclude
with some remaining unanswered questions.

1. Our partition forn points hasO(n) Steiner points. Does every set ofn points admit a convex Steiner
partition of weightO(W log n/ log log n) and with onlyo(n) Steiner points?

2. Does every set ofn points admit a convex Steiner partition of weightO(W log n/ log log n) and with
O(n) Steiner points, such that every face isfat (that is, the ratio of the radii of the minimum enclosing
and maximum inscribed circles over all faces is bounded by a constant)? Networks with fat convex
faces are of interest because they have constant geometric dilation; this follows from a result of [13].

3. What is the minimum size and weight, in terms ofn andW , of a Steiner network that supports
compass routing?

Acknowledgment. We are indebted to Nadia Benbernou, Erik Demaine, Martin Demaine, Mashhood
Ishaque, and Diane Souvaine for valuable conversations on these matters.
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