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Abstract

Given a set of points in the plane, and a sweep-line as a tool, what is best way to move the
points to a target point using a sequence of sweeps? In a sweep, the sweep-line is placed at a
start position somewhere in the plane, then moved orthogonally and continuously to another
parallel end position, and then lifted from the plane. The cost of a sequence of sweeps is the
total length of the sweeps. Another parameter of interest is the number of sweeps. Four variants
are discussed, depending on whether the target is a hole or a pile, and whether the target is
specified or freely selected by the algorithm. Here we present a ratio 4/π ≈ 1.27 approximation
algorithm in the length measure, which performs at most four sweeps. We also prove that, for
the two constrained variants, there are sets of n points for which any sequence of minimum cost
requires 3n/2 − O(1) sweeps.

1 Introduction

Sweeping is a well known and widely used technique in computational geometry. In this paper we
make a first study of sweeping as an operation for moving a set of points. The following question
was raised by Pawe l Żyliński [5]:

There are n balls on a table. The table has a hole (at a specified point). We want to
sweep all balls to the hole with a line. We can move the balls by line sweeping: all balls
touched by the line are moved with the line in the direction of the sweep. The problem
is to find an optimal sequence of sweeps which minimizes the total sweeping distance
covered by the line.

Although the above problem is quite natural, it does not seem to have been studied before.
We note an obvious application to robotics, in particular, to the automation of part feeding and
to nonprehensile part manipulation [1]. Imagine a manufacturing system that produces a constant
stream of small identical parts, which have to be periodically cleared out, or gathered to a collection
point by a robotic arm equipped with a segment-shaped sweeping device [1]. Here we study an
abstraction of such a scenario, when the small objects and the target are abstracted as points.
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Figure 1: A sweep of length (cost) x involving 7 points. From the initial 7 points swept, only 5 points
remain.

We now introduce some definitions to make the problem formulation more precise. We refer to
Figure 1. A set S of n points in the plane is given. In a sweep, the sweep-line is placed at a start
position somewhere in the plane and is moved orthogonally and continuously to another parallel
end position. Then the line is lifted from the plane. All points touched by the line are moved with
the line in the direction of the sweep. Points can merge during a sweep, and merged points are
subsequently treated as one point: a set of collinear points on any segment parallel to the sweep
direction and bounded by the initial and the final positions of the line will yield one point after the
sweep; see Figure 1 for an example.

A sweeping sequence for S is a sequence of sweeps that move all points in S to a target point.
The cost of a sweeping sequence is the total length of its sweeps. As it will be evident from our
Theorem 3, the sweep-line as a tool can be conveniently replaced by a finite sweep-segment of
length twice the diameter of the point set.

We consider several variants of the sweeping problem, by making two distinctions on the target.
First, the target can be either a hole or pile: if the target is a hole, then a point stays at the
target once it reaches there, i.e., the point drops into the hole; if the target is a pile, then a point
can still be moved away from the target after it reaches there. While it makes no difference for
our algorithms whether the target is a hole or a pile (i.e., our algorithms are applicable to both
variants), this subtle difference does matter when deriving lower bounds. Second, the target is
either constrained to be a specified point or unconstrained (an arbitrary point freely selected by
the algorithm). The four possible combinations, constrained versus unconstrained (C or U) and
hole versus pile (H or P), yield thus four variants of the sweeping problem: CH, CP, UH, and UP.

Our main results are the following: although there exist sets of n points that require Ω(n)
sweeps in any optimal solution (Section 3, Theorem 2), constant-factor approximations which use
at most 4 sweeps can be computed in linear or nearly linear time (Section 2, Theorem 1). We
also present some initial results and a conjecture for a related combinatorial question (Section 4,
Theorem 3), and conclude with two open questions (Section 5).

We now introduce some preliminaries. A sweep is canonical if the number of points in contact
with the sweep-line remains the same during the sweep. The following lemma is obvious.

Lemma 1. Any sweep sequence can be decomposed into a sweep sequence of the same cost, consist-
ing of only canonical sweeps. In particular, for any point set S, there is an optimal sweep sequence
consisting of only canonical sweeps.

Proof. Let |S| = n. A non-canonical sweep can be decomposed into a sequence of at most n
canonical sweeps in the same direction and of the same total cost.
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Throughout the paper, we use the following convention: if A and B are two points, AB denotes

the line through A and B,
−−→
AB denotes the ray starting from A and going through B, AB denotes

the line segment with endpoints A and B, and |AB| denotes the length of the segment AB.

2 A four-sweep algorithm

In this section, we present a four-sweep algorithm applicable to all four variants CH, CP, UH, and
UP.

Theorem 1. For any of the four variants CH, CP, UH, and UP of the sweeping problem (with
n points in the plane),

(I) A ratio
√

2 approximation that uses at most 4 sweeps can be computed in O(n) time;

(II) A ratio 4/π ≈ 1.27 approximation that uses at most 4 sweeps can be computed in O(n log n)
time.

Proof. We consider first the constrained variant, with a specified target o. Let S be the set of n
points, and let S′ = S ∪ {o}. We next present two algorithms.

(I) Algorithm A1. Choose a rectilinear coordinate system xoy whose origin is o (of arbitrary
orientation). Compute a minimal axis-parallel rectangle Q containing S′. Denote by w and h its
width and height respectively, and assume w.l.o.g. that h ≤ w. Perform the following (at most
four) sweeps: (i) sweep from the top side of Q to the x-axis; (ii) sweep from the bottom side of Q
to the x-axis; (iii) sweep from the left side of Q to the y-axis; (iv) sweep from the right side of Q
to the y-axis. Figure 2 illustrates the execution of the algorithm on a small example.

Figure 2: Running the four-sweep algorithm.

Analysis. Clearly, the algorithm gives a valid solution, whose total cost is ALG = w + h.
Let OPT be the cost of an optimal solution. We first argue that the approximation ratio of our
algorithm is at most 2; we then improve this bound to

√
2.
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We first show that OPT ≥ w. Let p and q be the two extreme points of S′ with minimum and
maximum x-coordinates. Assume first that p, q ∈ S. Let p′ and q′ be the projection points of p and
q on the x-axis throughout the execution of the sweep sequence. Put w1 = |p′o|, and w2 = |oq′|.
Note that after the sweep sequence is complete, p′ and q′ coincide with the origin o. Further note
that every sweep brings either p′ or q′ closer to o, but not both. Finally, observe that to bring p′

to o requires a total sweep cost of at least w1, and similarly, to bring q′ to o requires a total sweep
cost of at least w2. Therefore the total sweep cost is at least w1 + w2 = w, thus OPT ≥ w. Since
the total sweep cost is

ALG = w + h ≤ 2w ≤ 2 · OPT,

the ratio 2 follows when p, q ∈ S. The case when o is one of the two extreme points p and q is
completely analogous.

We now argue that OPT ≥ (w + h)/
√

2. Let X be an arbitrary sequence consisting of k
sweeps which solves the given instance S. For i = 1, . . . , k let xi be the cost of the ith sweep,
and αi ∈ [0, 2π) be its direction. Write x =

∑k
i=1

xi. Indeed, the ith sweep of cost xi can reduce
the current semi-perimeter of Q (the width plus the height of Q) by at most

√
2 xi; see also (1)

below. Here the points in S are considered moving, so S′, and its enclosing rectangle Q change
continuously as an effect of the sweeps. Since the semi-perimeter of Q drops from w + h to 0, by
summing over all sweeps, we get that in any sweep sequence for S of total cost x,

√
2 x =

√
2

k
∑

i=1

xi ≥ w + h,

thus
ALG = w + h ≤

√
2 · OPT,

and the approximation ratio
√

2 follows.

(II) Algorithm A2. First compute a minimum perimeter rectangle Q0 containing S′. This
takes O(n log n) using the rotating calipers algorithm of Toussaint [3]. Let now xoy be a rectilinear
coordinate system in which Q0 is axis-aligned. Let w and h be its width and height respectively.
Then perform the four sweeps as in Algorithm A1.

Analysis. Assume w.l.o.g. that w + h = 1. For β ∈ [0, π/2), let Q(β) denote the minimum
perimeter rectangle of orientation β containing S′; i.e., one of the sides of Q(β) makes an angle β
with the positive direction of the x-axis. Let w(β) and h(β) denote the initial values of the width
and height of Q(β) respectively. Note that [0, π/2) covers all possible orientations β of rectangles
enclosing S′.

As in the proof of the ratio
√

2 approximation ratio, recall that for any i ∈ {1, . . . , k}, the ith
sweep of cost xi can reduce the current semi-perimeter of Q(β) by at most xi

√
2. In fact we can

be more precise by taking into account the direction of the sweep: the reduction is at most

xi (| cos (αi − β)| + | sin (αi − β)|) ≤ xi

√
2. (1)

Since X solves S, by adding up the reductions over all sweeps i ∈ {1, . . . , k}, we must have—since
w(β) + h(β) ≥ 1, for every β ∈ [0, π/2):

k
∑

i=1

xi (| cos (αi − β)| + | sin (αi − β)|) ≥ 1. (2)
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We integrate this inequality over the β-interval [0, π/2]; xi and αi are fixed, and each term is
dealt with independently. Fix i ∈ {1, . . . , k}, and write α = αi for simplicity. Assume first that
α ∈ [0, π/2). A change of variables yields

∫ π/2

0

(| cos (α − β)| + | sin (α − β)|) dβ

=

∫ α+π/2

α
(| cos β| + | sin β|) dβ

=

∫ π/2

α
(cos β + sin β) dβ +

∫ α+π/2

π/2

(− cos β + sin β) dβ

= (sin β − cos β)
∣

∣

∣

π/2

α
+ (− sin β − cos β)

∣

∣

∣

α+π/2

π/2

= (1 − sin α + cos α) + (− cos α + sin α + 1) = 2.

Let

G(α) =

∫ α+π/2

α
(| cos β| + | sin β|) dβ.

It is easy to verify that G(α) = G(α+π/2) for any α ∈ [0, 2π), hence the integration gives the same
result, 2, for any αi ∈ [0, 2π), and for any i ∈ {1, . . . , k}. Hence by integrating (2) over [0, π/2]
yields

2

(

k
∑

i=0

xi

)

≥ π

2
, or x ≥ π

4
.

Since this holds for any valid sequence, we also have OPT ≥ π
4
. Recall that ALG = w + h = 1,

and the approximation ratio 4/π follows.

To extend our results to the unconstrained variant requires only small changes in the proof.
Instead of the minimum semi-perimeter rectangle(s) enclosing S′ = S ∪{o}, consider the minimum
semi-perimeter rectangle(s) enclosing S. All inequalities used in the proof of Theorem 1 remain
valid. We also remark that the resulting algorithms execute only two sweeps (rather than four):
from top to bottom, and left to right, with the target being the lower-right corner of the enclosing
rectangle.

2.1 A lower bound on the approximation ratio of Algorithm A2

It is likely that the approximation ratio of our four-sweep algorithm is slightly better than what
we have proved: we noticed that for both cases, when h is large and when h is small relative to
w, our estimates on the reduction are slightly optimistic. However, the construction we describe
next, shows that the ratio of our four-sweep algorithm cannot be reduced below 1.1784 (for either
variant).

Perhaps the simplest example to check first is the following. Take the three vertices of a unit
(side) equilateral triangle as our point set. For the constrained variant, place the target at the
triangle center: the optimal cost is at most

√
3 by 3 sweeps (in fact, equality holds, as shown in

the proof of Theorem 3), while the four-sweep algorithm uses 1 +
√

3/2. The ratio is about 1.077.
We now describe a better construction that gives a lower bound of about 1.1784; see Figure 3.

Place n points uniformly (dense) on the thick curve C connecting B and C. For the constrained
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variant, place the target at point B. The curve is made from the two equal sides of an obtuse
isosceles triangle with sharp angles α = arctan(1/2) ≈ 26.565◦, then “smoothed” around the
obtuse triangle corner. △ABC is an isosceles triangle with sides AB = AC =

√
5 and BC = 4,

with height AD = 1, and with angles 6 ABC = 6 ACB = α = arctan(1/2). E and F are two points
on AB and AC, respectively, such that DE ⊥ AB and DF ⊥ AC.

A

B CD

E FG

α α

Figure 3: A continuous convex curve C that gives a lower bound of about 1.1784 on the approximation ratio
of Algorithm A2.

The curve C consists of the two segments BE and CF and a curve C0 connecting E and F ,
defined as follows. For an arbitrary point G on C0, 6 ADG = β ≤ α, the length of the segment DG
is

|DG| = f(β) = 4 cos α + 4 sin α − 4 cos β − 2 sin β.

Observe that 4 sin α − 2 cos α = 0 holds by the definition of α, hence

d

dβ
f(β) = 4 sin β − 2 cos β ≤ 4 sin α − 2 cos α = 0,

where the derivative reaches zero at E and F (when β = α). So C is a continuous convex curve.
For a rectangle that circumscribes the curve C with one side tangent to C0 at point G, its width
and height are |BC| cos β and |DG| + |CD| sin β, respectively. Hence its semi-perimeter is

|BC| cos β + |DG| + |CD| sin β

= 4 cos β + (4 cos α + 4 sin α − 4 cos β − 2 sin β) + 2 sin β

= 4 cos α + 4 sin α.

Therefore the semi-perimeter of a minimum rectangle with orientation β, where 0 ≤ β ≤ α,
that encloses C is a constant: 4 cos α + 4 sin α. Since the length of C0 is

2

∫ α

β=0

f(β)dβ = 2

∫ α

β=0

(4 cos α + 4 sin α − 4 cos β − 2 sin β)dβ

= 8(cos α + sin α)α + 2(−4 sin β + 2 cos β)
∣

∣

∣

α

0

= 8(cos α + sin α)α + 2(−4 sin α + 2 cos α − 2)

= 8(cos α + sin α)α − 4,

and since |BE| = |CF | = 2 cos α, the length of C is 8(cos α + sin α)α− 4 + 4 cos α. The ratio of the
minimum semi-perimeter and the curve length is (after simplification by 4, and using the values
cos α = 2/

√
5, sin α = 1/

√
5, α = arctan(1/2))

4 cos α + 4 sin α

8(cos α + sin α)α − 4 + 4 cos α
=

3

6 arctan(1/2) −
√

5 + 2
= 1.1784 . . . .

Finally, observe that OPT is at most the length of C. This gives a lower bound of 1.1784 on the
approximation ratio of Algorithm A2, which holds for all four variants.
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3 Point sets for the constrained variants that require many sweeps

In this section we show that some point sets require many sweeps in an optimal solution, i.e., the
number of sweeps is not just a constant. In what follows, the target is constrained to a specified
point, and may be either a hole or a pile, i.e., we refer to both constrained variants CH and CP.

Theorem 2. For the two constrained variants CH and CP, and for any n ≥ 3, there are sets of
n points for which any optimal sweeping sequence consists of at least 3n/2 − O(1) sweeps.

rA

rB rC

A

B C

O

(a)

A

A0

B

C

C0

E

E0

F
F0

O

O0

D

S

T

(b)

Figure 4: A construction with three points A, B, and C (black points) forming a unit equilateral triangle
and n − 3 arbitrary points (white points) on the edge BC. The target is at the point B. Initially: A = A0,
B = B0, C = C0. (a) An optimal sweeping sequence. (b) Some properties of optimal sweeping sequences
are illustrated.

We now proceed with the proof of Theorem 2. We refer to Figure 4(a). Our set S consists of
three points A, B, and C (black points) forming a unit equilateral triangle and n− 3 points (white
points) arbitrary placed on the edge BC. The target is at the point B. For convenience, we place

△ABC initially with B at the origin and
−−→
BC along the x axis. In what follows, we refer to the

intermediate positions of the moving points: input points from the set S (such as A, B, C, D, etc.)
or other auxiliary points (such as E and F ) during a sequence of sweeps. When the intermediate
position of a point does not coincide with its original position, we avoid the possible ambiguity by
adding a subscript 0 to the label of the original position. For example, the two labels A and A0

in the figure refer to the intermediate and the original positions, respectively, of the same point A.
Initially, we have A = A0, B = B0, C = C0. We will show in Lemma 2 that B = B0 (that is, B
remains stationary) during any optimal sequence; this is evident for the CH variant, but not so for
the CP variant.

Define three rays: a ray rA from A in the 3π/2 direction, a ray rB from B in the π/6 direction,
and a ray rC from C in the 5π/6 direction. The three rays from A, B, and C initially intersect at a
single point O = O0, the center of △A0B0C0. We will show below that this concurrency property
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is maintained throughout any optimal sweeping sequence for S. We now define six special types of
sweeps:

Type A: A is moved in the direction
−→
AO. B and C are not moved.

Type BC: B and C are moved together in the direction
−→
OA. A is not moved.

Type B: B is moved in the direction
−−→
BO. A and C are not moved.

Type AC: A and C are moved together in the direction
−−→
OB. B is not moved.

Type C: C is moved in the direction
−−→
CO. A and B are not moved.

Type AB: A and B are moved together in the direction
−−→
OC. C is not moved.

We note that, for the CH variant, the three types involving B, namely types BC, B, and AB
are in fact not used, since point B will remain at the hole throughout any sweeping sequence.

For each of the six types, each moved point (among A, B, and C) is moved for a distance
equal to the sweep length, that is, the moved point is on the sweep-line during the sweep. If a
sweeping sequence consists of only sweeps of the six special types, then it can be easily verified (by
induction) that the three rays from A, B, and C still intersect at a single point O after each sweep;
see Figure 4(b).

The three segments A0O0, B0O0, and C0O0 determine two parallelograms A0O0B0E0 and
C0O0B0F0 (each is a rhombus with two 60◦ angles), as shown in Figure 4(b). We now observe
some properties of sweeps of the three types A, C, and AC. Consider how a sweep changes the
two parallelograms AOBE and COBF , initially A0O0B0E0 and C0O0B0F0: a sweep of type A
reduces the two sides AO and BE; a sweep of type C reduces the two sides CO and BF ; a sweep
of type AC reduces the three sides AE, CF , and OB (note that the side OB is shared by the
two parallelograms). During any sweeping sequence of the three types A, C, and AC, the point A
always remains inside the rhombus A0O0B0E0, and point C inside the rhombus C0O0B0F0.

Lemma 2. The optimal cost for S is
√

3. Moreover, any optimal sequence for S consists of only
sweeps of the three special types A, C, and AC, with a subtotal cost of

√
3/3 for each type.

Proof. We first show that the optimal cost for S is at most
√

3. We refer to Figure 4(a) for a
sweeping sequence of n − 1 alternating steps: (i) one sweep of type AC (the white arrow); (ii) two
sweeps, one of type A and the other of type C (the black arrows). Each step, except the first and
the last, merges C with a white point, in sequential order from right to left. The total number of
sweeps in this sequence is (3n − 3)/2 when n is odd, and is (3n − 4)/2 when n is even. The total
cost of this sequence is |A0O0| + |B0O0| + |C0O0| = 3 ·

√
3/3 =

√
3.

We next show that the optimal cost for S is at least
√

3. Consider an optimal sequence for S.
Assume w.l.o.g. that the sequence is canonical. We construct three paths, from the three points
A0, B0, and C0 to a single point, such that their total length is at most the cost of the sequence.
Each sweep in the sequence that moves one or two of the three points A, B, and C corresponds to
an edge in one of the three paths, with the sweep length equal to the edge length: (i) if a sweep
moves only one of the three points, then the corresponding edge extends the path from that point,
along the sweep direction; (ii) if a sweep moves two of the three points, then the corresponding edge
extends the path from the third point, along the opposite sweep direction. We note that, for the
three points A, B, and C, each three-point sweep is useless, and each two-point sweep is equivalent
to a one-point sweep in the opposite direction, in the sense that the resulting triangles △ABC are
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congruent. When the three points finally meet at the target, the three paths also end at a single
point (which could be different from the target).

The total length of the three paths is at least the total length of a Steiner tree for the three
points A0, B0, and C0. It is well known [2] that the minimum Steiner tree for the three points
A0, B0, and C0 is unique, and consists of exactly three edges of equal length

√
3/3, from the three

points to the center O0 of △A0B0C0. It follows that the optimal cost for S is at least
√

3. Together
with the matching upper bound achieved by the sequence illustrated in Figure 4(a), we have shown
that the optimal cost for S is exactly

√
3.

The uniqueness of the minimum Steiner tree for the three points A0, B0, and C0 implies that
every sweep in the optimal sequence must be of one of the six special types, with a subtotal cost
of |A0O0| = |B0O0| = |C0O0| =

√
3/3 for each of the three groups: A and BC, B and AC, and

C and AB. To complete the proof, we next show that sweeps of the three types B, AB, and BC
never appear in the optimal sequence. Consider the two possible cases for the target:

1. The target is a hole, that is, a point stays at the target once it reaches there. Since B is
already at the target, it must stay there. So this case is obvious, as noted after our definition
of the six types.

2. The target is a pile, that is, a point can be moved away from the target after it reaches
there. Although B is already at the target, it can still be moved away. The only sweeps that
move B are of the three types B, AB, and BC. Such sweeps all have a positive projection

in the direction
−−→
BO, and can only move B away from the target (and cannot move it back);

therefore they cannot appear in the optimal sequence.

This completes the proof of Lemma 2.

Let D be the rightmost white point. Figure 4(b) shows the initial position of D. Later in
Lemma 4, we will prove that D remains at its initial position until it is merged with C. In Lemma

3 however, we don’t make any assumption of D being at its original position. Let
−→
DS and

−−→
DT be

two rays from D with directions π/6 and −π/6, respectively.

Lemma 3. Consider an optimal sweeping sequence. If C is moved above the line DS or below
the line DT , then C remains either above DS or below DT until either C or D coincides with the
target.

Proof. We refer to Figure 4(b). Assume w.l.o.g. that the sweeping sequence is canonical. Consider
each remaining sweep in the sequence after C is at a position above DS or below DT :

Type C. Consider two cases: C is above DS or below DT .

1. C is above DS. If D is not moved, then C is moved further above DS. If both C and
D are moved (when CD ⊥ CO), then they are moved for the same distance in the same
direction, and C remains above DS.

2. C is below DT . Since DT is parallel to the sweep direction
−−→
CO, C remains below DT ,

Type AC. Consider two cases: C is above DS or below DT .

1. C is above DS. Since DS is parallel to the sweep direction
−−→
OB, C remains above DS.

2. C is below DT . If D is not moved, then C is moved further below DT . If both C and
D are moved, then they are moved for the same distance in the same direction, and C
remains below DT .
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Type A. Note that C may be both above DS and below DT . We divide the two cases in an
alternative way without overlap: C is either (i) above DS and not below (i.e., above or on)
DT or (ii) below DT .

1. C is above DS and not below DT . Then C is above D. Since C is not moved, D is not
moved either. So C remains above DS and not below DT .

2. C is below DT . Since DT is parallel to CO, D is above CO. The sweep may move A
down to O and correspondingly move D down until it is on the horizontal line through
O, but no further. So D remains above CO, and C remains below DT .

The proof of Lemma 3 is now complete.

Lemma 4. In any optimal sequence, each white point is not moved until it is merged with C, in
sequential order from right to left.

Proof. Assume w.l.o.g. that the sweeping sequence is canonical. Lemma 2 shows that the sweeps in
any optimal sequence are of the three types A, C, and AC. Let σ1 be the first sweep that moves a
white point, and let D1 be the first white point moved. If the sweep σ1 is of type A, then A would
be moved below the x axis (recall that in a sweep of type A the sweep-line always goes through A),
and any subsequent sweep that moves A, of type A or AC, would move A further below the x axis
and never to B. This contradicts the validity of the sequence. Therefore σ1 must be of type C or
AC.

We claim that C must be merged with the rightmost white point D before the sweep σ1. We
will prove the claim by contradiction. Suppose the contrary.

Our proof by contradiction is in two steps: In the first step, we will show that C is either above
DS or below DT at the beginning of sweep σ1. In the second step, we will show that the assumed
optimal sequence is not valid.

First step. The sweep-line of σ1 goes through D1 during the sweep. Since σ1 is of type C or
AC, C is also on the sweep-line of σ1. Consider two cases for the relation between D1 and D:

1. D1 6= D (D1 is to the left of D on the x axis). Then every point on the sweep-line, including
C, is either above DS or below DT .

2. D1 = D. Then every point on the sweep-line, except D, is either above DS or below DT .
Since C is not merged with D before σ1, C is either above DS or below DT .

In either case, C is either above DS or below DT .

Second step. From Lemma 3, C remains either above DS or below DT until either C or D
coincides with the target. This, as we will show in the following, implies that the sweeping sequence
is not valid. Consider the two possible cases for the target as either a pile or a hole:

1. The target is a pile, that is, a point can be moved away from the target after it reaches there.
Then C remains either above DS or below DT even after either C or D reaches the target. It
follows that C and D never merge, and hence cannot end up together at the target. Therefore
the sweeping sequence is not valid.

2. The target is a hole, that is, a point stays at the target once it reaches there. Let σ2 be a
sweep in the sequence that moves D to the target. We consider the three possible cases for
the type of σ2:
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Type AC. The sweep-line of σ2 goes through the two points A and C. As D is moved to
the point B by σ2, both parallelograms AOBE and COBF shrink to the point B, that
is, both A and C are moved to the target together with D. Then A, C, and D must
have been merged even before the sweep σ2. This is impossible because C is above DS
or below DT until either C or D reaches the target.

Type C. It follows by the same argument (the parallelogram COBF shrinks to the point
B) that C and D are merged before the sweep σ2, which is again impossible.

Type A. It follows by the same argument (the parallelogram AOBE shrinks to the point
B) that A and D are merged before the sweep σ2, above the line BO. This is impossible
because D cannot be moved above BO: a sweep of type AC does not change the distance
from D to BO; a sweep of type A can only move D further below BO; a sweep of type
C can move D to BO but not above BO, since C itself cannot be moved above BO.

In each case, D cannot be moved to the target. Therefore the sweeping sequence is not valid.

We have shown that the sequence is not valid with the target as either a pile or a hole. By
contradiction, this proves our original claim that C must be merged with D before the sweep σ1.

As soon as C is merged with D, we can consider D as deleted. The point set now reaches a
configuration similar to the original configuration: the two points B and C are on the x axis with
all the (unmoved) white points between them, and A alone is above the x axis. But now we have
one less white point. Repeating the argument in the preceding paragraphs inductively completes
the proof of Lemma 4.

We are now in position to finalize the proof of Theorem 2. We have shown that in an optimal
sequence, C must be merged with the white points one by one from right to left. Since the sweeps
are not along the x axis, each of the n − 3 white point requires at least one sweep to be merged.
The total number of sweeps in the sequence is at least n − O(1). We obtain a tighter estimate
(that matches our previous sweep sequence for S) as follows. Between two consecutive merges, C
has to be moved to the left by alternating sweeps of types AC and C. Between two sweeps of type
AC, since C is moved by a sweep of type C, A must also be moved by a sweep of type A, to make
AC ⊥ OB for the next sweep of type AC. Therefore each merge requires either one sweep of type
AC or two sweeps of types A and C, in an alternating pattern as shown in Figure 4(a). The total
number of sweeps in the sequence is at least 3n/2 −O(1). This completes the proof of Theorem 2.

4 A combinatorial question for the unconstrained variants

The following related question suggests itself: What is the maximum cost required for sweeping a
planar point set of unit diameter to a single (unspecified) target point? Depending on whether the
target point is a hole or a pile, define

ρH = sup
S

inf
X

cost(X), for the variant UH,

and
ρP = sup

S
inf
X

cost(X), for the variant UP,

where S ranges over all finite planar point sets of unit diameter, and X ranges over all sweeping
sequences for S. We give estimates on the two numbers ρH and ρP in the following theorem:
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Theorem 3. 1.73 ≈
√

3 ≤ ρH ≤ ρP ≤ 2.

Proof. Any sweeping sequence for the UP variant is also a sweeping sequence for the UH variant,
so we have ρH ≤ ρP . We first prove the upper bound ρP ≤ 2. Let S be an arbitrary finite planar
set with unit diameter. Let p and q be two points in S at unit distance. Then S is contained in a
rectangle with width 1 (parallel to the line pq) and height at most 1. A sweep along the width and
a sweep along the height reduce the rectangle to a single point (the pile), at a cost of at most 2.

We next prove the lower bound ρH ≥
√

3. Let S be the set of three vertices of an equilateral
triangle T of unit side. Let X∗ be an optimal sequence of canonical sweeps for S. Using the same
idea as in the proof of Lemma 2, we construct three paths, from the three vertices of T to a common
point, such that their total length is at most the cost of X∗. It follows that the cost of X∗ is at
least the total length of a minimum Steiner tree for the three vertices, which is

√
3 [2]. Note that

our analysis for this example is tight: three sweeps along the edges of the minimum Steiner tree
clearly move the three points of S to a single point (the center of T ).

The reader can observe that a weaker lower bound ρH ≥ π/2 ≈ 1.57 follows from our result in
Theorem 1 applied to a set of n points uniformly distributed on a circle (for large n). We think the
upper bound in Theorem 3 is best possible, for instance, in the same case of n points uniformly
distributed on a circle of unit diameter, for n going to infinity:

Conjecture 1. ρH = ρP = 2.

5 Concluding remarks

It is natural to consider the sweeping problem for infinite (bounded) sets as well. We implicitly have
done so in Section 2.1, with the curve C. Let S be an infinite and bounded set in the plane. Then
the optimum cost of sweeping S (to a pile or a hole) is the infimum cost over all finite sweeping
sequences for S (of the same type). In particular, for the (points in the) disk of unit diameter, we
conjecture that both these optimal costs are equal to 2 in the unconstrained variants.

Other interesting examples for the sweeping problem are open curves. The analysis of Algo-
rithm A2, in particular the lower bound construction, is related to the following question: Which
curve of length 1 maximizes the minimum perimeter of an enclosing rectangle? According to a
result of Welzl [4], every closed curve of unit length can be enclosed in a rectangle of perimeter
4

π . Consider an open curve C of unit length. By doubling it, or by adding to it a symmetric copy
connecting its endpoints, we get a closed curve C ′ of length 2. By the result we just mentioned, C ′

can be enclosed in a rectangle of perimeter 8

π . It follows that any open curve of unit length can be
enclosed in a rectangle of perimeter 8

π . Equivalently, any open curve of unit length can be enclosed
in a rectangle of semi-perimeter 4

π = 1.2732 . . .. On the other hand, our lower bound construction
gives an open curve of unit length for which the semi-perimeter of any enclosing rectangle is at
least 1.1784 . . ..

Interestingly enough, the example in Theorem 2 can be extended to an infinite set, where the
length of an optimal sweeping sequence is finite,

√
3, but an infinite number of sweeps is required.

For instance, consider the (infinite) sequence of points on a unit segment BC, whose distance from
B is 1

i , for i = 1, 2, . . ., and a point A placed at the vertex of an equilateral triangle ∆ABC.

Besides Conjecture 1, two interesting questions (for any of the four variants) remain open:

(1) What is the computational complexity of the sweeping problem for n points? It was not
obvious to us whether there is any (computable, exponential) upper bound on the number of
sweeps required. Is the sweeping problem even decidable?
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(2) If it is, does there exist a polynomial time algorithm for generating an optimal sweeping
sequence, given n points? Can the number of sweeps in an optimal solution always be bounded
by a polynomial in n? i.e., is there always an optimal solution with a polynomial number of
sweeps?
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